accuracy of Radiative Transfer Schemes in global modeling

the AeroCom A2 TROP/ARCTIC experiment an update

Cynthia A. Randles¹

Stefan Kinne², Michael Schulz³, Gunnar Myhre⁴, and Philip Stier⁵

- 1. Morgan State University (MSU) and NASA GSFC, Code 614
- 2. Max Planck Institute for Meteorology, Germany
- 3. Meteorologisk Institutt, Oslo, Norway
- 4. CICERO, Norway
- 5. University of Oxford, UK

10th AeroCom Workshop, Kyushu University, Japan, October 3-6, 2011

Participating Models

ar many thanks to the contributing models /partners ... thus far:

GENLN2-DISORT LBL (CICERO; G.Myhre) benchmark Line-to-line

- DISORT (CICERO; Gunnar Myhre)
- IIBRadtran (Finnish Meteorological Institute; Jani Huttunen)
- RRTMG-SW (GSFC; L.Oreopoulos and D. Lee, Seoul Nat University)
- Edwards and Slingo 96 (U. Reading; C. Ryder, E.Highwood, B. Harris)
- RFM DISORT (line by line) (U. Read.; C.Ryder, E. Highwood, B. Harris)
- HadGEM2 GCM (Steven Rumbold, UK Met Office)

we'd like to close contributions by DATE

Motivation

assess solar radiative transfer schemes in AeroCom global models

- inter-compare AeroCom model solar radiative transfer schemes without aerosols or clouds given standard atmospheres and surface albedo.
- useful to see how each model treats (1) Rayleigh scattering, (2)
 ozone absorption, and (3) water vapor absorption.
- will facilitate analysis of AeroCom forcing experiments (i.e. A2 CTRL & A2 PRE) and prescribed aerosol field forcing (i.e. AERpre 1 and AERpre 0) ... see P.Stier's presentation
- we encourage all global models with shortwave radtiave transfer scheme and off-line codes ... to participate

participate ! NOW.

Case 1 Setup: Rayleigh Atmos.

- use the same GCM/CTM as set up for the AeroCom A2-ZERO experiment, or standalone radiation codes.
- AFGL standard atmospheres.
 AFGL standard atmospheres.
- run 2 one-day (01 Jan 2006) simulations at one model time-step (so you do not have to pull the code out of your mode environment) for
 - ** tropical AFGL standard atmosphere
 - sub-arctic Winter AFGL standard atmosphere
- compare solar broadband (0.3-4.0um) and visible (0.2-0.7um) downw. rad. fluxes to the surface (normalized by top-of-the atmosphere flux)
 at a solar zenith angle of **30 degree** (or sun-elevation of 60 degree)
 at a solar zenith angle of **75 degree** (or sun-elevation of 25 degree)

Case 2 Setup: Prescribe aerosols

include in addition aerosol

AOD = 0.2 at 550 nm (lowest 2 km) two cases
 solar wavelength independent (AER_prescribed 0)
 Ångstrøm Exponent of 1.0 (spectrally dependent)

asymmetry factor (g) = 0.7 (solar wavelength independent)

Solar absorption two cases

 \sim NO single scattering albedo $ω_0$ = 1.0 (wavelength independent)

 \sim YES single scattering albedo $\omega_0 = 0.8$ (wavelength independent)

again for solar zenith angles of 30 and 75 degrees
 again for tropics and sub-arctic atmospheric profiles

AFGL Profiles

AFGL Standard Atmospheres

1-km Resolution: 0-120 km Corresponding pressure levels also given.

Diagnostics

- shortwave (0.2-4um) downwelling (*direct* + *diffuse*) flux at top of atm. no clouds
- shortwave (0.2-4um) downwelling (*direct* + *diffuse*) surface flux, no clouds
- shortwave (0.2-4um) downwelling diffuse surface flux, no clouds
- visible (0.2-0.7um) downwelling (*direct* + *diffuse*) flux at top of atm. no clouds
- visible (0.2-0.7um) downwelling (*direct* + *diffuse*) surface flux, no clouds
- shortwave (0.2-4um) upwelling flux at top of the atmosphere, no clouds
- and diagnostics should be instantaneous at <u>one</u> model time-step.
 - This could be the first time step, but at noon UTC is preferred.
- and ata should be in netCDF format following the CF convention
 - follow AeroCom website summary under DIRECT FORCING diagnostics package (<u>http://nansen.ipsl.jussieu.fr/AEROCOM/AEROCOM_diagnostics.xls</u>)
 - CMOR rewriting tool (<u>http://www-pcmdi.llnl.gov/software-portal/cmor/</u>)
 - AeroCom A2 Exp. CMOR tables (<u>http://www-lscedods.cea.fr/aerocom/CMOR</u>)

in total, **report only on 36 numbers**! (a couple of more for AOD fixed)

Analysis

- follow the Halthore et al. (2005) effort on Intercomparison of shortwave radiative transfer codes and measurements (J. Geophys. Res., 110, D11206, doi:10.1029/2004JD005293)
- will examine provided global results at two chosen sun elevations (solar zenith angles of 30° and 75°) for each of the two standard atmospheres.
 - because not all models use the same wavelength bands, we normalize all results by the TOA downwards flux for the bands provided, and we compare results normalized to a common TOA downward flux
- interest from DOE ARM program to archive these results along with the Halthore et al. [2005] results as well as other model inter-comparison results (Warren Wiscombe and Alice Cialella, ARM EXternal Data Center (XDC), personal communication)
- ... time frame for submission: as soon as you can!

Case 1: Clear-Sky (1)

absolute mean and **std dev** (excl. GENLN2-DISORT benchmark in brackets) **in W m⁻² blue numbers indicate problems** (values outside ±1 Standard Deviation of the Mean)

flux	SZA	SAW	TROP
↓Broadband SFC	30	992.5 ± 25.6 (1006.3)	904.9 ± 10.2 (896.9)
	75	253.6 ± 2.7 (254.0)	223.0 ± 5.3 (210.3)
↓ Diffuse SFC	30	61.8 ± 3.1 (64.4)	61.7 ± 3.0 (63.8)
	75	36.7 ± 1.3 (37.3)	36.6 ± 1.3 (36.7)
↓ VIS SFC	30	474.6 ± 5.3 (480.5)	478.8 ± 5.2 (481.8)
	75	113.7 ± 2.5 (115.0)	114.1 ± 2.2 (113.6)
↑ Broadband TOA	30	225.7 ± 3.9 (228.4)	206.2 ± 0.6 (201.6)
	75	82.3 ± 0.8 (83.0)	76.4 ± 0.8 (73.8)

Case 1: Clear-Sky (2)

MEAN BIAS (as a % difference rel. to GENLN2-DISORT) **± Standard Deviation of Bias BLUE** (**RED**) indicate intermodel mean is **bias**ed **low** (**high**) relative to GENLN2-DISORT

flux	SZA	SAW	TROP
↓Broadband SFC	30	-1.4 ± 2.5%	+0.9 ± 1.1%
	75	-0.1 ± 1.1%	+6.0 ± 2.5%
↓ Diffuse SFC	30	-4.1 ± 4.7%	-3.3 ± 4.7%
	75	-1.7 ± 3.4%	-0.3 ± 3.5%
↓ VIS SFC	30	-1.2 ± 1.1%	-0.6 ± 1.1%
	75	-1.2 ± 2.2%	+0.4 ± 2.0%
↑ Broadband TOA	30	-1.2 ± 1.7%	+2.3 ± 0.3%
	75	-0.8 ± 0.9%	+3.5 ± 1.1%

Case 1: Clear-Sky (3)

- inter-model variability is greatest for downward broadband surface fluxes
- for most fields, the benchmark Line-to-Line code ...

... is within ±1 standard deviation of the inter-model mean.

- there is more inter-model variability at the lower sun-elevation angle
- there is more inter-model variability for the ARCTIC winter profile
- most fields are within 2% of the GENLN2-DISORT benchmark, except
- Arctic, high sun-elevation:
- tropic, low sun-elevation:
- tropic, low sun-elevation:

- Downwards diffuse flux at the surface
- Downwards broadband flux at the surface
- Upwards broadband flux at TOA

TOA Aerosol Radiative Forcing *in W m*⁻² with scattering aerosols (case 2)

(Number in parenthesis is a% change in magnitude relative to GENLN2_DISORT)

Model	SAW 30	SAW 75	TROP 30	TROP 75
LBL GENLN2_DISORT	- 8.8	- 20.6	- 8.2	- 17.7
ES96 (220 bands delta)	-11.5	-16.9	-11.0	-15.5
ES96 (6 bands delta)	-11.1	-16.8	-10.6	-15.3
RFMD	-8.4	-19.7	-8.2	-18.2
DISORT	-7.7	-20.0	-7.6	-19.2
libRadtran	-8.9	-21.2	-8.4	-19.0
RRTMG-SW	-10.8	-17.3	-10.3	-15.8
HadGEM2_GCM	-11.6	-17.6	-10.9	-16.0
MEAN	- 10.0 (14%)	- 18.5 (10%)	- 9.6 (17%)	- 17.0 (4%)
MEDIAN	- 10.8	- 17.6	- 10.3	- 15.9
STDDEV	1.6	1.8	1.4	1.7

TOA Aerosol Radiative Forcing *in W m*⁻² absorbing aerosols (case 2)

(Number in parenthesis is % change in magnitude relative to GENLN2_DISORT)

Model	SAW 30	SAW 75	TROP 30	TROP 75
LBL GENLN2_DISORT	11.6	- 7.1	10.1	- 6.2
ES96 (220 bands delta-r)	9.1	-5.4	8.2	-5.1
ES96 (6 bands delta-r)	8.8	-5.4	7.9	-5.1
RFMD	11.4	-7.2	10.4	-6.7
DISORT	10.6	-7.1	10.0	-6.9
libRadtran	11.8	-7.4	10.5	-6.6
RRTMG-SW	9.7	-5.9	8.7	-5.5
HadGEM2_GCM	9.1	-5.7	8.2	-5.3
MEAN	10.1(13%)	- 6.3 (11%)	9.1 (10%)	- 5.9 (5%)
MEDIAN	9.7	-5.9	8.7	-5.5
STDDEV	1.2	0.9	1.1	0.8

Case 2: cases with aerosols

- Inter-model variability is greatest for downwards diffuse flux at the surface.
- for most flux fields, benchmark line-to-line code is within ±1 standard deviation of the inter-model mean.

• generally, there is more inter-model variability at lower zenith angels for both profiles, and there is more inter-model variability for the SAW profile relative to the TROP profile (especially for the downwards broadband flux and downwards broadband diffuse flux at the surface).

• With the exception of Downward diffuse flux at the surface, **the inter-model averages are within about 3% of the GENLN2-DISORT benchmark** (TROP SZA=75 Broadband down at the surface is 8.7% higher)

 diffuse fluxes down at the surface are low compared to GENLN2-DISORT by 15-20% ! 10th AeroCom Workshop, Kyushu University, Japan, October 2011

potential issues: diff. fluxes & ∆ scale

• U. Reading provides results with delta rescaling switched on and off; (prev.results were switched on (#4 and #5, right).

- with delta rescaling switched off (below left, #2 and #3), diffuse fluxes are improved; but TOA RF is made worse!
- could something similar be going on in other models?

Note: pink below NOT included in previous previous results because a duplication of included models.

 1. GENLN2-DISORT LBL
 2. ES96 220 new
 3. ES96 6 new
 4. ES96 220 new delta rescaled
 5. ES96 6 new delta rescaled
 6. RFMD
 7. DISORT
 8. libRadtran
 9. RRTMG-SW
 10. RRTMG-SW
 11. HadGEM2_GCM
 12. 220_Bands
 13. ES (220 bands)
 14. MEDIAN
 15. MEAN

Summary

- This simple experiment shows that there is (un-needed) diversity in solar radiative transfer codes even in the clear sky (though the difference relative to the LBL code is generally within 3%).
- This diversity typically increases as aerosols are included, and as the solar zenith angle increases.
- This, of course, has consequences for calculations of aerosol direct radiative forcing.

many thanks to the contributing groups/models thus far! ... and we are anticipating more group/models to participate

Additional Slides

10th AeroCom Workshop, Kyushu University, Japan, October 2011

Case 2: Scattering Aerosols TOA RF

1. GENLN2-DISORT LBL 2. ES96 220 new 3. ES96 6 new 4. ES96 220 new delta rescaled 5. ES96 6 new delta rescaled 6. RFMD 7. DISORT 8. libRadtran 9. RRTMG-SW

10. RRTMG-SW 11. HadGEM2_GCM 12. 220_Bands 13. ES (220 bands) 14. MEDIAN 15. MEAN

Case 2: Scattering Aerosol Normalized, Subarctic Winter SZA=30

Case 2: Scattering Aerosol Normalized, Subarctic Winter SZA=75

Case 2: Scattering Aerosol Normalized, Tropical SZA=30

Case 2: Scattering Aerosol Normalized, Tropical SZA=75

C. A. Randles

10th AeroCom Workshop, Kyushu University, Japan, October 2011

Case 2: Absorbing Aerosols TOA RF

Case 2: Absorbing Aerosol Normalized, Subarctic Winter SZA=30

Case 2: Absorbing Aerosol Normalized, Subarctic Winter SZA=75

Case 2: Absorbing Aerosol Normalized, Tropical SZA=30

Case 2: Absorbing Aerosol Normalized, Tropical SZA=75

Case 2: Scattering Aerosol (1)

Absolute Mean and Standard Deviation (excluding GENLN2-DISORT benchmark)

in W m⁻²; GENLN2-DISORT results given in parenthesis.

Bold numbers indicate that the GENLN2-DISORT Flux is NOT within ±1 Standard Deviation of the of the Mean

Flux	SZA	SAW	TROP
↓Broadband SFC	30	979.0 ± 24.1 (993.8)	891.6 ± 8.9 (884.0)
	75	230.0 ± 4.5 (226.5)	201.8 ± 5.1 (186.8)
↓ Diffuse SFC	30	166.5 ± 37.5 (203.8)	159.9 ± 35.2 (191.5)
	75	85.5 ± 16.3 (98.8)	80.5 ± 14.4 (88.5)
↓ VIS SFC	30	465.4 ± 4.9 (471.9)	469.4 ± 4.9 (473.0)
	75	101.3 ± 3.0 (100.7)	101.8 ± 2.8 (99.6)
↑ Broadband TOA	30	235.7 ± 5.2 (237.2)	215.8 ± 1.8 (209.8)
	75	100.8 ± 1.7 (103.6)	93.4 ± 2.2 (91.5)

Case 2: Scattering Aerosol (2)

Mean Bias (expressed as a % Difference relative to GENLN2-DISORT)

± Standard Deviation of Bias

Blue (red) indicates that the inter-model mean is biased low (high) relative to GENLN2-DISORT

Flux	SZA	SAW	TROP
↓Broadband SFC	30	-1.5 ± 2.4%	$+0.9 \pm 1.0\%$
	75	$1.5 \pm 2.0\%$	$+8.0 \pm 2.7\%$
↓ Diffuse SFC	30	-18.3 ± 18.4%	-16.5 ± 18.4%
	75	-13.4 ± 16.5%	-9.1 ± 16.3%
↓ VIS SFC	30	-1.4 ± 1.0%	-0.8 ± 1.0%
	75	$+0.6 \pm 3.0\%$	$+2.2 \pm 2.8\%$
↑ Broadband TOA	30	-0.6 ± 2.2%	$+2.9 \pm 0.9\%$
	75	-2.7 ± 1.7%	$+2.1 \pm 2.4\%$

Case 2: Absorbing Aerosol (1)

Absolute Mean and Standard Deviation (excluding GENLN2-DISORT benchmark)

in W m⁻²; GENLN2-DISORT results given in parenthesis.

Bold numbers indicate that the GENLN2-DISORT Flux is NOT within ±1 Standard Deviation of the of the Mean

Flux	SZA	SAW	TROP
↓Broadband SFC	30	941.4 ± 22.8 (953.4)	855.7 ± 7.9 (846.2)
	75	210.1 ± 4.4 (206.1)	183.5 ± 5.4 (168.8)
↓ Diffuse SFC	30	135.1 ± 28.7 (163.3)	129.9 ± 26.9 (153.7)
	75	69.2 ± 12.0 (78.4)	65.4 ± 10.6 (70.6)
↓ VIS SFC	30	439.1 ± 5.6 (444.3)	442.9 ± 5.4 (445.3)
	75	89.3 ± 3.0 (88.3)	89.7 ± 2.8 (87.3)
↑ Broadband TOA	30	215.7 ± 4.4 (216.8)	197.1 ± 1.5 (191.5)
	75	88.6 ± 0.9 (90.1)	82.3 ± 1.4 (80.0)

Case 2: Absorbing Aerosol (2)

Mean Bias (expressed as a % Difference relative to GENLN2-DISORT)

± Standard Deviation of Bias

Blue (red) indicates that the inter-model mean is biased low (high) relative to GENLN2-DISORT

Flux	SZA	SAW	TROP
↓Broadband SFC	30	-1.3 ± 2.4%	$+1.1 \pm 0.9\%$
	75	$+1.9 \pm 2.1\%$	+8.7 ± 3.2%
↓ Diffuse SFC	30	-17.2 ± 17.6%	-15.5 ± 17.5%
	75	-11.7 ± 15.3%	-7.4 ± 15.0%
↓ VIS SFC	30	-1.2 ± 1.3%	$-0.5 \pm 1.2\%$
	75	+1.1 ± 3.4%	$+2.8 \pm 3.2\%$
↑ Broadband TOA	30	$-0.5 \pm 2.0\%$	$+2.9 \pm 0.8\%$
	75	-1.6 ± 1.0%	$+2.9 \pm 1.7\%$

Case 1: Clear-Sky Broadband Total Down at Surface

SAW

30

SZA

S

Case 1: Clear-Sky Broadband Diffuse Down at Surface

SAW

30

SZA

S

SZA

Case 1: Clear-Sky Visible Down at Surface

SAW

30

SZA

TROP

1 2 3 4 5 6 7 8 9 10

106.000

Case 1: Clear-Sky Broadband Up at TOA

SAW

30

SZA =

S

SZA

Case 2: Scattering Aerosol Broadband Total Down at Surface

SAW

30

SZA

S

Case 2: Scattering Aerosol Broadband Diffuse Down at Surface

SAW

281.000

Case 2: Scattering Aerosol Visible Down at Surface

SAW

30

SZA

S

TROP

SFC VIS [Wm3]

Down

otal

ŕ

Down SFC VIS [W

Total

Case 2: Scattering Aerosol Broadband Total Up at TOA

SAW

MEDIAN (excluding #1): 100.5

1 2 3 4 5 6 7 8 9 10

98.900

97.600

96.300

95.000

ŝ

otal

30

SZA

S

SZA

Case 2: Scattering Aerosol Broadband TOA RF

SAW

-4.000

Case 2: Absorbing Aerosol **Broadband Total Down at Surface**

SAW

30

SZA

S

TROP

MEDIAN (excluding #1): 184.5

1 2 3 4 5 6 7 8 9 10

162.600 158.000

Case 2: Absorbing Aerosol **Broadband Diffuse Down at Surface**

SAW

1 2 3 4 5 6 7 8 9 10

30

SZA

AZS

Case 2: Absorbing Aerosol Visible Down at Surface

SAW

S

NS

Case 2: Absorbing Aerosol Broadband Total Up at TOA

SAW

Case 2: Absorbing Aerosol Broadband TOA RF

SAW

MEDIAN (excluding #1): -5.9

1 2 3 4 5 6 7 8 9 10

-9.300

-10.000

30

SZA

S

