accuracy of Radiative Transfer Schemes in global modeling

the AeroCom A2 TROP/ARCTIC experiment an update

Cynthia A. Randles1

Stefan Kinne², Michael Schulz³, Gunnar Myhre⁴, and Philip Stier⁵

- 1. Morgan State University (MSU) and NASA GSFC, Code 614
- 2. Max Planck Institute for Meteorology, Germany
- 3. Meteorologisk Institutt, Oslo, Norway
- 4. CICERO, Norway
- 5. University of Oxford, UK

Participating Models

 \overline{a} **many thanks to the contributing models** /partners ... thus far:

GENLN2-DISORT LBL (CICERO; G.Myhre) **benchmark Line-to-line**

- क़৴ **DISORT** (CICERO; Gunnar Myhre)
- **libRadtran** (Finnish Meteorological Institute; Jani Huttunen)
- 60^ **RRTMG-SW** (GSFC; L.Oreopoulos and D. Lee, Seoul Nat University)
- **Edwards and Slingo 96** (U. Reading; C. Ryder, E.Highwood, B. Harris)
- **RFM DISORT (line by line)** (U. Read.; C.Ryder, E. Highwood, B. Harris)
- **HadGEM2 GCM** (Steven Rumbold, UK Met Office)

there's still room for more results if you would like to contribute! we'd like to close contributions by DATE

Motivation

assess solar radiative transfer schemes in AeroCom global models

- inter-compare AeroCom model solar radiative transfer schemes *without aerosols or clouds* given standard atmospheres and surface albedo.
- useful to see how each model treats (1) **Rayleigh** scattering, (2) **ozone** absorption, and (3) **water vapor** absorption.
- will facilitate analysis of AeroCom forcing experiments (i.e. **A2 CTRL** & **A2 PRE**) and prescribed aerosol field forcing (i.e. **AERpre 1** and **AERpre 0**) *… see P.Stier's presentation*
- $\scriptstyle\omega$ we encourage all global models with shortwave radtiave transfer scheme and off-line codes … to participate

participate ! NOW.

Case 1 Setup: Rayleigh Atmos.

- use the same GCM/CTM as set up for the AeroCom **A2-ZERO** experiment, or standalone radiation codes.
- prescribe **ozone-profiles** and **water vapor profiles** from provided AFGL standard atmospheres.
- prescribe **surface albedo** at 0.2 globally.
- run *2* one-day *(01 Jan 2006)* simulations at **one** model time-step *(so you do not have to pull the code out of your mode environment)* for
	- **tropical** AFGL standard atmosphere
	- **sub-arctic** Winter AFGL standard atmosphere
- $\scriptstyle\omega$ compare solar broadband (0.3-4.0um) and visible (0.2-0.7um) downw. rad. fluxes to the surface (normalized by top-of-the atmosphere flux) at a solar zenith angle of **30 degree** (or sun-elevation of 60 degree) at a solar zenith angle of **75 degree** (or sun-elevation of 25 degree)

Case 2 Setup: Prescribe aerosols

include in addition aerosol

 AOD = 0.2 at 550 nm (lowest 2 km) **two cases** solar wavelength independent (AER_prescribed 0) $\mathbb{\scriptstyle{\mathcal{P}}}$ Ångstrøm Exponent of 1.0 (spectrally dependent)

asymmetry factor (*g)* **= 0.7** (solar wavelength independent)

solar absorption **two cases**

 ∞ NO NO **single scattering albedo** ω **0 = 1.0** (wavelength independent)

YES **single scattering albedo** ω **0 = 0.8** (wavelength independent)

 … again for solar zenith angles of 30 and 75 degrees … again for tropics and sub-arctic atmospheric profiles

AFGL Profiles

AFGL Standard Atmospheres

1-km Resolution: 0-120 kmCorresponding pressure levels also

Diagnostics

ᡋᢦᢞ **6** diagnostic fields for each case:

- **shortwave** (0.2-4um) **downwelling** (*direct + diffuse*) flux **at top of atm**. no clouds
- क़৴ **shortwave** (0.2-4um) **downwelling** (*direct + diffuse*) **surface** flux, no clouds
- **shortwave** (0.2-4um) **downwelling** *diffuse* **surface** flux, no clouds
- क़৴ **visible** (0.2-0.7um) **downwelling** (*direct + diffuse)* flux **at top of atm**. no clouds
- **visible** (0.2-0.7um) **downwelling** (*direct + diffuse*) **surface** flux, no clouds
- क़৴ **shortwave** (0.2-4um) **upwelling** flux at **top of the atmosphere**, no clouds
- diagnostics should be instantaneous at **one** model time-step.
	- क़৴ This could be the first time step, but at noon UTC is preferred.
- $\scriptstyle\omega$ data should be in netCDF format following the CF convention
	- follow AeroCom [website summary under DIRECT FORCING diagno](http://nansen.ipsl.jussieu.fr/AEROCOM/AEROCOM_diagnostics.xls)stics package (http://nansen.ipsl.jussieu.fr/AEROCOM/AEROCOM_diagnostics.xls)
	- क़৴ CMOR rewriting tool (<http://www-pcmdi.llnl.gov/software-portal/cmor/>)
	- ್ಷ AeroCom A2 Exp. CMOR tables (<u>http://www-Iscedods.cea.fr/aerocom/CMOR</u>)

in total, **report only on 36 numbers**! (a couple of more for AOD fixed)

Analysis

- follow the *Halthore et al. (2005)* effort on Intercomparison of shortwave radiative transfer codes and measurements (*J. Geophys. Res.*, *110,* D11206, doi:10.1029/2004JD005293)
- $\scriptstyle\ll$ will examine provided global results at two chosen sun elevations (solar zenith angles of 30° and 75°) for each of the two standard atmospheres.
	- **because not all models use the same wavelength bands, we normalize all results by the TOA downwards flux for the bands provided, and we compare results normalized to a common TOA downward flux**
- interest from DOE ARM program to archive these results along with the *Halthore et al.* [2005] results as well as other model inter-comparison results (Warren Wiscombe and Alice Cialella, ARM EXternal Data Center (XDC), *personal communication*)
- time frame for submission: **as soon as you can**!

Case 1: Clear-Sky (1)

absolute mean and **std dev** (excl. GENLN2-DISORT benchmark in brackets) **in W m-² blue numbers indicate problems** (values outside ±1 Standard Deviation of the Mean)

Case 1: Clear-Sky (2)

MEAN BIAS (as a % difference rel. to GENLN2-DISORT) ±**Standard Deviation of Bias BLUE** (**RED**) indicate intermodel mean is **bias**ed **low** (**high**) relative to GENLN2-DISORT

Case 1: Clear-Sky (3)

- inter-model variability is greatest for downward broadband surface fluxes
- for most fields, the benchmark Line-to-Line code …

… is within ±1 standard deviation of the inter-model mean.

- there is more inter-model variability at the lower sun-elevation angle
- there is more inter-model variability for the ARCTIC winter profile
- **most** fields are **within 2% of the GENLN2-DISORT benchmark,** *except*
- Arctic, high sun-elevation: Downwards diffuse flux at the surface
-
-
-
- tropic, low sun-elevation: Downwards broadband flux at the surface
- tropic, low sun-elevation: Upwards broadband flux at TOA

TOA Aerosol Radiative Forcing *in W m-2* **with scattering aerosols (case 2)**

(Number in parenthesis is a% change in magnitude relative to GENLN2_DISORT)

TOA Aerosol Radiative Forcing *in W m-2* **absorbing aerosols (case 2)**

(Number in parenthesis is % change in magnitude relative to GENLN2_DISORT)

Case 2: cases with aerosols

- Inter-model variability is greatest for downwards diffuse flux at the surface.
- for most flux fields, benchmark line-to-line code is within ±1 standard deviation of the inter-model mean.
- generally, there is **more inter-model variability at lower zenith angels** for both profiles, and there is **more inter-model variability for the SAW profile** relative to the TROP profile (especially for the downwards broadband flux and downwards broadband diffuse flux at the surface).
- With the exception of Downward diffuse flux at the surface, **the inter-model averages are within about 3% of the GENLN2-DISORT benchmark** (TROP SZA=75 Broadband down at the surface is 8.7% higher)
- **diffuse fluxes down at the surface are low compared to GENLN2-DISORT by 15-20% !**

10th AeroCom Workshop, Kyushu University, Japan, October 2011 C. A. Randles

potential issues: **diff. fluxes &** Δ **scale**

- U. Reading provides results with delta rescaling switched on and off; (prev.results were switched on (#4 and #5, right).
- with delta rescaling switched off (below left, #2 and #3), diffuse fluxes are improved; but TOA RF is made worse!
- could something similar be going on in other models?

Note: pink below NOT included in previous previous results because a duplication of included models.

Summary

- This simple experiment shows that there is (un-needed) diversity in solar radiative transfer codes *even in the clear sky (though the difference relative to the LBL code is generally within 3%).*
- This diversity typically increases as aerosols are included, and as the solar zenith angle increases.
- This, of course, has consequences for calculations of aerosol direct radiative forcing.

many thanks to the contributing groups/models thus far! … and we are anticipating more group/models to participate

Additional Slides

10th AeroCom Workshop, Kyushu University, Japan, October 2011 C. A. Randles

Case 2: Scattering Aerosols TOA RF

Case 2: Scattering Aerosol Normalized, Subarctic Winter SZA=75

Case 2: Scattering Aerosol Normalized, Tropical SZA=30

Case 2: Scattering Aerosol Normalized, Tropical SZA=75

Case 2: Scattering Aerosol Normalized, Subarctic Winter SZA=30

10th AeroCom Workshop, Kyushu University, Japan, October 2011 C. A. Randles

Case 2: Absorbing Aerosols TOA RF

15. MEAN

15.000 MEAN (excluding #1): 10.1
STDEV (excluding #1): 1.2 MEDIAN (excluding #1): 9.7 14.100 TOA RF Broadband [W m³] 13.200 12.300 11.400 10.500 9.600 8.700 7.800 6.900 6.000 10

Case 2: Absorbing Aerosol Normalized, Subarctic Winter SZA=30

Case 2: Absorbing Aerosol Normalized, Subarctic Winter SZA=75

Case 2: Absorbing Aerosol Normalized, Tropical SZA=30

Case 2: Scattering Aerosol (1)

Absolute Mean and Standard Deviation (excluding GENLN2-DISORT benchmark)

in W m-2; GENLN2-DISORT results given in parenthesis.

Bold numbers indicate that the GENLN2-DISORT Flux is NOT within ±1 Standard Deviation of the of the Mean

Case 2: Scattering Aerosol (2)

Mean Bias (expressed as a % Difference relative to GENLN2-DISORT)

± Standard Deviation of Bias

Blue (red) indicates that the inter-model mean is biased low (high) relative to GENLN2-DISORT

Case 2: Absorbing Aerosol (1)

Absolute Mean and Standard Deviation (excluding GENLN2-DISORT benchmark)

in W m-2; GENLN2-DISORT results given in parenthesis.

Bold numbers indicate that the GENLN2-DISORT Flux is NOT within ±1 Standard Deviation of the of the Mean

Case 2: Absorbing Aerosol (2)

Mean Bias (expressed as a % Difference relative to GENLN2-DISORT)

± Standard Deviation of Bias

Blue (red) indicates that the inter-model mean is biased low (high) relative to GENLN2-DISORT

Case 1: Clear-Sky Broadband Total Down at Surface

SAW

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 $\mathbf{||}$

 $\Im 0$

 $\begin{array}{c} \hline \end{array}$

SZA

Case 1: Clear-Sky Broadband Diffuse Down at Surface

SAW

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 $\mathcal{H}% _{0}$

SZA

 \Im

 $\vert \vert$

SZA

Case 1: Clear-Sky Visible Down at Surface

SAW

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 \Box

 $\Im 0$

 $\begin{array}{c} \hline \end{array}$

SZA

Case 1: Clear-Sky Broadband Up at TOA

SAW

 $SZA = 75$ $SZA = 30$

 $\overline{}$

 $\mathop{\text{||}}$

SZA

 30

 $SZA=$

Case 2: Scattering Aerosol Broadband Total Down at Surface

SAW

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 $\mathbf{||}$

 50

 $\|$

SZA

Case 2: Scattering Aerosol Broadband Diffuse Down at Surface

SAW

281.000

Case 2: Scattering Aerosol Visible Down at Surface

SAW

 $SZA = 75$ $SZA = 30$

 Ω

 $\overline{}$

 \Box

 50

 $\vert \vert$

SZA

TROP

 \mathbb{m}^2

SFC VIS [W

Down 5

otal

Έ

Down SFC VIS [W

Total

Case 2: Scattering Aerosol Broadband Total Up at TOA

SAW

MEDIAN (excluding #1): 100.5

1 2 3 4 5 6 7 8 9 10

100.200

98.900

97.600

96.300

95.000

봄

otal Upw

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 $\mathbf{||}$

SZA

30

 $\vert \vert$

SZA

TROP

1 2 3 4 5 6 7 8 9 10

87.000

Case 2: Scattering Aerosol Broadband TOA RF

SAW

 \Im

 $\begin{array}{c} \hline \end{array}$

SZA

Case 2: Absorbing Aerosol Broadband Total Down at Surface

SAW

 $\Im 0$

 $\vert \vert$

SZA

 \mathbf{v}

 $\overline{}$

 \Box

SZA

Case 2: Absorbing Aerosol Broadband Diffuse Down at Surface

SAW

MEDIAN (excluding #1): 72.5

1 2 3 4 5 6 7 8 9 10

 $\Im 0$

 $\vert \vert$

SZA

Diffuse

46.600

38,800

31.000

Case 2: Absorbing Aerosol Visible Down at Surface

SAW

 \mathbf{v}

 $\overline{}$

 $\mathbf{||}$

SZA

Case 2: Absorbing Aerosol Broadband Total Up at TOA

SAW

1 2 3 4 5 6 7 8 9 10

Case 2: Absorbing Aerosol Broadband TOA RF

SAW

1 2 3 4 5 6 7 8 9 10

 $SZA = 75$ $SZA = 30$

 \mathbf{v}

 $\overline{}$

 $\mathbf{||}$

 $\Im 0$

 \vert

SZA

TROP

 $\frac{1}{\epsilon}$

'OA RF Broadband [W