

A Simulation Study of Global Distribution of Temporal and Spatial Variation of PM2.5 Concentration

Hua Zhang

(<u>huazhang@cma.gov.cn</u>)

Dongdong Yang Shuyun Zhao National Climate Center, CMA, Beijing, China

Outline

Significance

Observational fact

Experiment Design

Results and Discussion

Summary

Significance

- Reduce visibility, affect the quality of air;
- Increase mortality rates of severe and chronic disease and damage respiratory system; increase the cancer rates.

• PM2.5—Climate

2

- Influence cloud, precipitation, etc.
- Influence the radiation balance of atmosphere.

Air pollution and Climate

FAQ 8.2, Figure 1: Schematic diagram of the impact of pollution controls on specific emissions and climate impact. Solid black line indicates known impact, dashed line indicates uncertain impact. From IPCC AR5

Purpose

From the past to the future : 1850-2010-2050-2100 :

(1)The <u>variation</u> of PM2.5/anthropogenic/natural aerosol concentration.
(2)The <u>contribution</u> of each aerosol to PM2.5 and its variation over China.
(3)The <u>trend</u> of PM2.5 concentration at typical regions of the world.

Observational PM2.5 in 2013 air pollution event In China

From ZHANG Xiao Ye, et al., Factors contributing to haze in China, Chin Sci Bull (Chin Ver), 2013, 58:1178-1187

The contribution of components to PM 10 in China

图 5 中国气象局大气成分观测网-CAWNET 在我国不同区域的站点 PM10 中各化学组成所占比例 中同是观测站点分布图及 9 个我国霾的分布区域,其中红圈划出的是我国 4 个最严重的霾分布区¹³

From ZHANG Xiao Ye, et al., Factors contributing to haze in China, Chin Sci Bull (Chin Ver), 2013, 58:1178-1187

Experiment Design —Model Introduction

BCC_AGCM2.0.1

- **Dynamical formulation:** Eulerian dynamical core
- Horizontal resolution : <u>T42 (approximately 2.8° × 2.8°)</u>
- Vertical direction: <u>terrain-following hybird coordinate</u>,
- 26 levels, with a top located at about 2.9 hPa.
- **Radiation scheme: <u>BCC_RAD</u>**
- **Cloud overlap scheme:** <u>McICA-BCC_RAD</u>
- **Two-moment microphysical cloud scheme**

- Aerosol model CUACE/Aero was developed by the Chinese Academy of Meteorological Sciences of the China Meteorological Administration (CAMS/CMA)
- The processes for the emission, transport, chemical transformation, cloud interaction, and deposition of five aerosol species (sulfate, BC, OC, soil dust, and sea salt) were taken into account.
- The aerosol size bin was divided into 12 bins: (in radius: μm)

	1	2	3	4	5	6	7	8	9	10	11	12
PM2	9.005	0.01~	0.02~	0.04~	0.08~	0.16~	0.32~	0.64~	1.28~	2.56~	5.12~	10.24~
	0.01	0.02	0.04	0.08	0.16	0.32	0.64	1.28	2.56	5.12	10.24	20.48

Emissions of BC, OC, SO₂ and sulfate, and dimethyl sulfide (DMS) are from AeroCom, Sea salt and dust aerosols are emitted online: the sea salt module was developed by Gong et al. (2002), and the soil dust scheme was from Marticorena and Bergametti (1995).

BCC_AGCM2.0.1_CUACE/Aero online coupled model system: Every development of **BCC_AGCM2.0.1_CUACE/Aero** was tested and assessed to keep the simulation of both the climatic state and aerosols reasonable, e.g. Wu et al. (2008, 2010), Zhang et al. (2012, 2014), Jing & Zhang (2012) ; Wang et al. (2014) ; Zhao et al. (2014)

Experiment Design ——Data Introduction

Experiment Design

Experiment Design

Step 2:

We have run the model for 23 years on each time node and taken the annual mean of the last 20 years as the climate state.

Results & Discussion

(1)1850-1980 /The Past The variation of PM2.5 concentration over the globe (annual & seasonal) (2)2010-2050 /The Future The variation of PM2.5 concentration over the globe (annual & seasonal)

(3) The Contribution

Contribution of anthropogenic and natural aerosols to variation of PM2.5 concentration(etc.China)

(4)Trend of Variation

Northern / Southern America Northern / Central Africa Western Europe East Asia

Annual Mean Variation of PM2.5 Concentration over the Globe (1850-1980) $(unit:mg m^{-2})$

10 -2

Seasonal Mean Variation of Column Concentration of PM2.5 over the Globe(unit:mg m⁻²)

Results & Discussion

(1)1850-1980 /The Past The variation of PM2.5 concentration over the globe (annual & seasonal) (2)2010-2050 /The Future The variation of PM2.5 concentration over the globe (annual & seasonal)

(3) The Contribution

Contribution of anthropogenic and **natural** aerosols to variation of **PM2.5** concentration(etc.China)

(4)Trend of Variation

Northern / Southern America Northern / Central Africa Western Europe East Asia

Annual Mean Variation of PM2.5 Concentration over the Globe (2010-2050)

 $(unit:mg m^{-2})$

Seasonal Mean Variation of Column Concentration of PM2.5 over the Globe (unit:mg m⁻²) (2010-2050)

Results & Discussion

(1)1850-1980 /The Past The variation of PM2.5 concentration over the globe (annual & seasonal) (2)2010-2050 /The Future The variation of PM2.5 concentration over the globe (annual & seasonal)

(3) The Contribution

Contribution of anthropogenic and natural aerosols to variation of PM2.5 concentration(eg. China)

(4)Trend of Variation

Northern / Southern America Northern / Central Africa Western Europe East Asia

1850-1980 Seasonal distribution of PM2.5 Variation over China (unit:mg m⁻²)

 Table 1 Contribution of Each Aerosol to PM2.5 Concentration variation over China

1850-1980	MAM	JJA	SON	DJF	ANN
Sulfate (SF)	7.1(26%)	6.4(48%)	5.7(74%)	3.9 (41%)	5.8(48%)
Black Carbon(BC)	0.3(1%)	0.3(2%)	0.3(3%)	0.2 (2%)	0.3 (2%)
Organic Carbon(OC)	1.0(4%)	0.5 (4%)	0.8(10%)	0.9 (9%)	0.8 (6%)
Sea Salt (SS)	0.2(1%)	0.0 (0%)	0.1(1%)	0.0 (0%)	0.1 (1%)
Soil Dust(SD)	18.5(68%)	6.3(46%)	0.9 (12%)	-4.7(48%)	5.2 (43%)
Anthro PM2.5	8.4 (31%)	7.2 (54%)	6.7(87%)	5.1(52%)	6.8 (56%)
Natural PM2.5	18.7(69%)	6.2 (46%)	1.0 (13%)	-4.8(48%)	5.3 (44%)

2010-2050 (<u>RCP4.5</u>) Seasonal distribution of PM2.5 Variation over China

(unit:mg m⁻²)

Table 2 Contribution of Each Aerosol to PM2.5 Concentration variation over China

2010-2050(RCP4.5)	MAM	JJA	SON	DJF	ANN
Sulfate (SF)	-4.7 (44%)	-4.8 (65%)	-4.3 (42%)	-2.9 (21%)	-4.2 (57%)
Black Carbon(BC)	-0.2 (2%)	-0.2 (3%)	-0.2 (2%)	-0.2 (1%)	-0.2 (3%)
Organic Carbon(OC)	-1.3 (12%)	-0.7 (9%)	-0.8 (8%)	-0.8 (6%)	-0.9 (12%)
Sea Salt (SS)	-0.1 (1%)	-1.3 (18%)	-0.5 (5%)	-0.1 (1%)	-0.5 (7%)
Soil Dust(SD)	-4.4 (41%)	2.9 (39%)	5.5 (53%)	-10.2 (72%)	-1.6 (22%)
Anthro_PM2.5	-6.3 (58%)	-5.7 (77%)	-5.3 (51%)	-3.8 (27%)	-5.2 (70%)
Natural _PM2.5	-4.5 (42%)	1.7 (23%)	5.0 (49%)	-10.3 (73%)	-2.2 (30%)

The Contributions of 5 Aerosol Species over China in 2010 to surface PM2.5 concentration

(unit : µg m⁻³; contribution percentage of each components to PM2.5 IN brackets)

AEROSOL	MAM	JJA	SON	DJF	ANN
Sulfate	2.74	2.80	2.22	1.96	2.43
(SF)	(29%)	(45%)	(40%)	(35%)	(36%)
Black Carbon	0.45	45%	0.42		
(BC)	(5% Anth		(6%)		
Organic Carbon	0.26	(3%)	0.23		
(OC)	(3%)		(3%)		
Soil Dust	5.82	2.40	2.57	2.93	3.43
(SD)	(60%)	(39%)	(45%)	(52%)	(52%)
Sea Salt	0.14	0.29	0.22	0.14	0.20
(SS)	(2%)	(5%)	(4%)	(3%)	(3%)

Results & Discussion

(1)1850-1980 /The Past The variation of PM2.5 concentration over the globe (annual & seasonal) (2)2010-2050 /The Future The variation of PM2.5 concentration over the globe (annual & seasonal)

(3) The Contribution

Contribution of anthropogenic and natural aerosols to variation of PM2.5 concentration(eg. China)

(4)Trend of Variation

North / South America Northern / Central Africa Western Europe China

Trend of Variation (unit:mg m⁻²)

Concentration Variation

Trend of Variation (unit:mg m⁻²)

Trend of Concentration

Concentration Variation

Trend of Variation (unit:mg m⁻²)

Concentration Variation

Concentration Variation

Summary

PM2.5:

- **1850-1980** the concentration of PM2.5 was increased obviously almost all over the world, especially in Arabian Peninsula, north of China and the Sahara Desert.
- □2010-2050 the concentration of PM2.5 will be increased over the Sahara Desert, while be decreased in Asia, America and Europe. <u>Contribution to the difference of PM2.5 (over China) :</u>
- **1850-1980, the contribution of anthropogenic aerosols (56%) to PM2.5 variation is a little bit more than natural aerosols(44%).**
- **2010-2050, anthropogenic aerosols (70%) are much more than natural aerosols(30%) in the variation of PM2.5.**
- □ Natural aerosols occupy more than half (55%) than
- anthropogenic aerosols (45%) in PM2.5 surface concentration for annual mean over China (under nitrate aerosol is not considered in this work).

The End Thanks For Your Attention ! JUGUK2 FOR YOUR AUGUUM

1

fppt.com