15th CAS-TWAS-WMO Forum & 15th AeroCOM/4th AeroSat Workshop

Emergent Constraints for Aerosol Indirect Effect

Minghuai Wang

School of Atmospheric Sciences, Nanjing University

09/19/2016, Beijing, China

Uncertainties in radiative forcing come primarily from aerosol radiative forcing

Climate Models: indispensible tools for studying aerosol climate effects, but with limitations in representing aerosol-cloud interactions

3

Observations are critical for evaluating and improving climate models

Direct constraints on model states are inefficient for constraining aerosol indirect forcing

Constraining CCN in current climate does not necessarily narrowing the estimate of aerosol indirect forcing

Emergent constraints

Definition: Physically explainable empirical relationship between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations (Klein and Hall, 2015, Curr. Clim. Change Rep.)

Three types of emergent constraints:

- Potential emergent constraints (simple relationship)
- Promising emergent constraints (physical basis for relationship)
- Confirmed emergent constraints (physical understanding is credible)

Emergent constraints in climate feedback studies

- Predictor: albedo change from seasonal cycle
- Predictand: albedo changes from climate change

- Predictor: lower tropospheric mixing over oceans
- Predictand: climate sensitivity

S_{POP}: An emergent constraint for aerosol cloud lifetime effects of aerosols

- Predictor: S_{POP} from the present-day climate
- Predictand: Liquid water path change in response to CCN changes from PI to PD (cloud lifetime effects of aerosols)

Physically explainable: Both S_{POP} and λ strongly depends on the relative role of autoconversion in rain formation.

S_{POP}: promising emergent constraint or confirmed emergent constraint?

The 3rd AeroCOM indirect effect intercomparison project

- Main objective: To study cloud lifetime effects of aerosols in global aerosol-climate models, especially those used in CMIP5 (led by Steve Ghan and Minghuai Wang)
- Model runs: two runs (5 years each), All_2000 (PD, present day) and All_1850 (PI, pre-industrial)
- Participants: CAM5.3 and its variants (5 versions); ETH-ECHAM6-HAM2; SPRINTARS;HadGEM3-UKCA; ModelE2-TOMAS; GFDLAM3

Regime dependence of cloud lifetime effects (as a function of w500)

Emergent constraints for other changes?

NANJING UNIVERSI

$S_{POP:}$ a better metric for constraining cloud water response to aerosols than S_R

 S_{POP} : rain frequency susceptibility S_{R} : rain susceptibility

Discrepancy in observational estimates of SPOP

S_{POP_CDNC} vs. S_{POP_AI}

S_{POP_CDNC} is substantially larger than S_{POP_AI}, which can be explained by the weak dependence of CDNC on AI

Constraints from both S_{POP_CDNC} and S_{POP_AI}

Summary

- Emergent constraints provides a way to constrain aerosol indirect forcing that is based on physical understanding and interpretation
- Rain frequency susceptibility (S_{POP}) is shown to be a promising emergent constraint for cloud lifetime effects of aerosols
- Further work is need to better quantify observational uncertainties and to develop new emergent constraints on multiple processes for different cloud regimes

Acknowledgments:

- Nanjing Univ.: S. Zhang, C. Gong, H. Bai, A. Ding, C. Fu
- Pacific Northwest National Laboratory: S. Ghan, M. Ovchinnikov, R. Easter, Y. Qian, W. Gustafson
- Univ. of Wyoming: X. Liu; UMBC: Z. Zhang
- AeroCOM modelers: D. Neubauer, U. Lohmann, S. Ferrachat, T. Takeamura, A. Gettelman, H. Morrison, Y. Lee, D. Shindell, D. Partridge, P. Stier, Z. Kipling

Relative changes in CCN vs. relative changes in LWP: (PD-PI)/PI

The response in LWP to a given CCN perturbation in CAM5 is about 3 times that in the MMF.

A new observable based on NASA A-Train satellites

Rain frequency susceptibility to aerosol loading

S_{pop}=-dlnPOP/dlnAI

- POP: Probability of precipitation (raining clouds divided by all clouds)
- AI : Aerosol Index
- Spop includes information about aerosols, clouds, and precipitation
- S_{pop} is easy to calculate (e.g., S_R, R is rain rate)

The Multi-scale Aerosol-Climate Model

CRM cloud/precipitation statistics used for cloud processing of aerosols

Published estimates of aerosol indirect effects

Expressing indirect forcing in terms of liquid water path sensitivity

Value at λ=0.04 provides estimate of indirect forcing given change in CCN

