Going Through a Phase: Particulate Water in Atmospheric Aerosol

Margaret Tolbert University of Colorado

Aerosol water is 2-3 times dry aerosol mass.

Liao and Seinfeld JGR (2005)

Increased particle water impacts visibility, climate, and atmospheric chemistry

• Particles must be aqueous before growth

Slide from AM Carlton, 2016

Salt Deliquescence and Efflorescence

events of 5–25 January 2013 at the urban sites of Beijing, Shanghai, Guangzhou and Xi' an. R-J Huang et al. Nature 2014, 1-5 (2014) doi:10.1038/nature13774

Phase transitions in this talk

Optical Levitation Setup

An upward oriented Gaussian beam facilitates initial trapping

The Bessel beam supplies additional gradient force and can trap 350 nm particles (or less)

Liquid vs Solid

Sizing:Evaporation of a Glycerol Droplet

Droplet Sizing

$D_p = 17.589 \pm 0.006 \,\mu m$

Homogeneous Phase Transitions of Hygroscopic Salts

Ammonium Sulfate Deliquescence

- water uptake by 79% RH
- fully deliquesced by 81% RH

AS Homogeneous Efflorescence

Lower RH —

Far-Field Imaging: Homogeneous efflorescence of Na₂SO₄

Bright-field imaging of trapped crystals

The rigidity of the crystalline surface make it difficult to trap

Comparison with Literature Values

Efflorescence

Deliquescence

Deliquescence RH > Efflorescence RH

Salt Deliquescence and Efflorescence

Contact

Global Hi-Res Aerosol Simulation

http://gmao.gsfc.nasa.gov/research/aerosol/modeling/nr1_movie/

Internally Mixed Particles Common in Atmosphere

Sulfate-salt

Sulfate-mineral

Soot-salt

NaCl

Li et al. (2003) J. GeoPhys. Res., Buseck and Pósfai (1999) PNAS

What happens to the water upon contact?

Contact Efflorescence: PSL on AS

NH₄NO₃ assumed always aqueous

NH₄NO_{3(s)}

NH₄NO_{3(aq)}

Contact impacts phase

Always liquid NH₄NO₃

Mostly solid NH₄NO₃

• "Perfect" match: shuts down supersaturation

• "Perfect" match: shuts down supersaturation

• Efflorescence RH generally decreases with poor lattice match

• "Perfect" match: shuts down supersaturation

• Efflorescence RH generally decreases with poor lattice match

Aqueous NaBr can induce efflorescence!

Contact nucleation using functionalized amorphous organic particles

polystyrene latex spheres as CN: examine surface charge

PSLs are not expected to be effective heterogeneous nuclei

Polystyrene latex spheres (PSLs) functionalized with carboxyl (-) or amidine (+)

Homogeneous Efflorescence / PSL Immersion

• similar DRH and ERH

• immersion not effective

Contact with 400 nm amidine (+) PSL

• similar contact induced ERH for both salts (with Cl⁻ counter ion)

• Related to Na⁺ low surface propensity? Ion-specific effects?

Would mineral aerosol be good contact nuclei?

Mineral particles excellent IN

• Mineral particles have surface charge similar to (-) PSL

Contact Nucleation with Mineral Dust

• Compare contact with immersion

Contact more effective than immersion

Very similar to (-) PSLs

Contact more effective than immersion

Very similar to (-) PSLs

Heterogeneous ERH of NaCl by Single Particles

- Contact and immersion ERH higher than homogeneous ERH
 - Single collision contact ERH higher than immersion ERH
 - Similar behavior for illite, montmorillonite, (-) PSL

Conclusion

Particles collide in the atmosphere

Lattice match one factor in contact efflorescence

Contact more effective than immersion

Ion specific effects for contact efflorescence

Atmospheric contact: more solid particles

Acknowledgments

- Tolbert group
- Sara Lance
- Josh Gordon
- National Science
 Foundation
- CIRES