

Discussion items for AeroCom steps in 2016/17

Michael Schulz Norwegian Meteorological Institute

Outline

- AeroCom Science topics
- Control Experiment 2016
- AeroCom infrastructure
- BAMS overview paper
- Aerocom-AerChemMIP
- Next AeroCom meetings

Last years 100% AeroCom papers...

Koffi, B.; Schulz, M.; Breon, F. M.; Dentener, F.; Steensen, B. M.; Griesfeller, J.; Winker, D.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T.; Bian, H. S.; Chin, M.; Diehl, T.; Easter, R.; Ghan, S.; Hauglustaine, D. A.; Iversen, T.; Kirkevag, A.; Liu, X. H.; Lohmann, U.; Myhre, G.; Rasch, P.; Seland, O.; Skeie, R. B.; Steenrod, S. D.; Stier, P.; Tackett, J.; Takemura, T.; Tsigaridis, K.; Vuolo, M. R.; Yoon, J.; Zhang, K., Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research-Atmospheres 2016, 121 (12), 7254-7283.

Ghan, S.; Wang, M.; Zhang, S.; Ferrachat, S.; Gettelman, A.; Griesfeller, J.; Kipling, Z.; Lohmann, U.; Morrison, H.; Neubauer, D.; Partridge, D. G.; Stier, P.; Takemura, T.; Wang, H.; Zhang, K., Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences 2016.

Kipling, Z.; Stier, P.; Johnson, C. E.; Mann, G. W.; Bellouin, N.; Bauer, S. E.; Bergman, T.; Chin, M.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevag, A.; Kokkola, H.; Liu, X. H.; Luo, G.; van Noije, T.; Pringle, K. J.; von Salzen, K.; Schulz, M.; Seland, O.; Skeie, R. B.; Takemura, T.; Tsigaridis, K.; Zhang, K., What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3-UKCA and inter-model variation from AeroCom Phase II. Atmos. Chem. Phys. 2016, 16 (4), 2221-2241. pdf

AeroCom Science topics

Summary from the meeting?

- Surface extinction and absorption
- Nitrate
- Biomass burning
- Anthropogenic Dust
- Aerosol size and CCN
- Forcing decomposition BC, semidirect, ERF, transient ERF, indirect
- Indirect effect constraints from Bardabunga, Ship emissions, new experiments
- COSP output, backscatter aerosol output
- Aerosol trends
- Current campaigns eg South Atlantic ORACLES, LASIC, CLARIFY
- Feedbacks involving aerosols
- Uncertainty reduction through model evaluation / constraints

AeroCom Control Experiment 2016

- https://wiki.met.no/aerocom/phase3-experiments
- Please feedback on specification for AP3-CTRL2016-PD and AP3-CTRL2016-PI
- Use new CMIP6 new emissions 2014 and 1850 ??
- Submit results until End of November
- Use this to check CMIP6 model version
- Results should end up in joint BAMS paper including updated AeroCom median for PD and PI
- Link to current more specialised AeroCom experiments...

AeroCom/AerChemMIP New climatology and trend simulation

- Use new CMIP6 emissions 1850-2014 https://pcmdi.llnl.gov/projects/input4mips/
- Decadal runs 1850-1970 (one year per decade)
- 5 year runs
 (1975-1980-1985-1990-1995-2000-2005-2010-2014)
- 3d monthly fields, aod, aaod, loads, emissions, BC, OC, DUST, SO4, NO3, SS, BB (?), CCN (@0.3% SS)
- AeroCom-AerChemMIP climatology product
- Results in by spring/summer 2017 ??
- Interest to do that?

AeroCom infrastructure 1/2

- 175 users have access to AeroCom users server
- AeroCom database new structure per phase and project
 - 0.7 2.5 1.3 TB AeroCom phases I II III
 - 0.04 0.03 1.1 TB AeroCom Indirect I II III
 - 0.11 8.2 TB HTAP phase I II
 - 0.18 TB Satellite Data / 0.13 TB cci-Aerosol
 - 0.2 ACCMIP / 1.3 ECMWF / 0.8 ECLIPSE /
- Data storage system renewed, see Jan Griesfeller poster

AeroCom infrastructure 2/2 New visualization of station&model data

21 September 2016

Meteorologisk institutt

Michael Schulz AeroCom workshop, Beijing

BAMS overview paper

- Overview of AeroCom science goals, achievements, plans, infrastructure
- Basis Notes from last years workshop, this years presentations, working group lead contribution
- New AeroCom median model PD and PI, base year 2010 and 2014 and 1850
- What is the status of knowledge on aerosol impact on forcing and climate evolution?
- What should the AeroCom community pursue as experiments and data evaluations?
- Timeline: Outline October, Contributions November, Draft January, Final write-up in AeroCom Writing Workshop Feb/Mar 2017 Norway?

Received: 01 Jun 2016 - Accepted: 11 Jul 2016 - Published: 12 Jul 2016

E a Harris

AerChemMIP..... What is interesting for AeroCom?

https://wiki.met.no/aerocom/aerchemmip/diagnostics Unfortunately not yet fully integrated in CMIP6 data request

NTCF Forcing documentation in the coupled CMIP models

Atmospheric composition change documentation / Trend analysis

Aerosol-Climate Feedback analysis

Future Low Air Pollution scenario

AerChemMIP forcing diagnostics 30 year long simulations with fixed SST/Seaice

Experiment ID	Minimum model	CH ₄	N ₂ O	Aerosol	Ozone	CFC/	Tier	
	configuration			Precursors	Precursors	HCFC		
piSSTclim	AGCM-AER	1850	1850	1850	1850	1850	1	this could be done
piSSTclim-NTCF	AGCM-CHEM	1850	1850	2014	2014	1850	1	funt in 2017
piSSTclim-Aer	AGCM-AER	1850	1850	2014	1850	1850	2	jirsi in 2017
piSSTclim-BC	AGCM-AER	1850	1850	1850 (non BC)	1850	1850	2	once the CMIP6
				2014 (BC)				
piSSTclim-03	AGCM-CHEM	1850	1850	1850	2014	1850	2	model versions are fixed
piSSTclim-CH4	AGCM-CHEM	2014	1850	1850	1850	1850	2	And the DI control men
piSSTclim-N2O	AGCM-CHEM*	1850	2014	1850	1850	1850	2	And the FI control run
piSSTclim-HC	AGCM-CHEM*	1850	1850	1850	1850	2014	2	has been achieved
piSSTclim-NOX	AGCM-CHEM	1850	1850	1850	1850 (non NO _X)	1850	3	
					2014 (NO _X)			
piSSTclim-VOC	AGCM-CHEM	1850	1850	1850	1850 (non	1850	3	
					CO/VOC)			
					2014 (CO/VOC)			

Meteorologisk institutt

AerChemMIP coupled AOGCM and AGCM simulations Characterizing transient forcing history and atmospheric composition change in one shot

Experiment ID	Minimum model	CH ₄	N ₂ O	Aerosol	Ozone	CFC/	Tier
	configuration			Precursors	precursors	HCFC	
hist- piNTCF	AOGCM-CHEM	Hist	Hist	1850	1850	Hist	1
hist- piAer	AOGCM-AER	Hist	Hist	1850	Hist	Hist	2
hist- 1950HC	AOGCM-CHEM*	Hist	Hist	Hist	Hist	1950	1

Experiment ID	Minimum model	CH ₄	N ₂ O	Aerosol	Ozone	CFC/	Tier
	configuration			Precursors	precursors	HCFC	
histSST	AGCM-AER	Hist	Hist	Hist	Hist	Hist	1
histSST- piNTC F	AGCM-CHEM	Hist	Hist	1850	1850	Hist	1
histSST- piAer	AGCM-AER	Hist	Hist	1850	Hist	Hist	2
histSST- piO3	AGCM-CHEM	Hist	Hist	Hist	1850	Hist	2
histSST- 1950HC	AGCM-CHEM*	Hist	Hist	Hist	Hist	1950	1
histSST- piCH4	AGCM-CHEM	1850	Hist	Hist	Hist	Hist	1
histSST- piN2O	AGCM-CHEM*	Hist	1850	Hist	Hist	Hist	2

How good Is the forcing Diagnostic in Transient runs?

Forcing decomposition "triple call"

How many calls to the radiation calculation do we need? To diagnose direct, indirect, semi-direct, and BC forcing....

[within Preindustrial and Current day, or transient simulation]

- 2 x [Cloudy/All-sky and clear sky]
- 2 x [With / without Aerosol scattering and absorption]
- 2 x [With / without black carbon]??

Is there interest in a webinar how to do that?

4-8 calls to radiation and separate storage of TOA fluxes

AerChemMIP Aerosol - Climate feedback analysis

- Which framework to choose for analysis ???
- AerChemMIP analysis of doubling natural emissions?
- Emission and load diagnostics in transient climate simulations ?
- Kernel method to separate forcing and feedbacks

Experiment ID	Minimum model configuration	Flux to be doubled	Tier
piSSTclim-2xdust	AGCM-AER	Dust	2
piSSTclim-2xss	AGCM-AER	Sea salt	2
piSSTclim-2xDMS	AGCM-AER	Oceanic DMS	3
piSSTclim-2xfire	AGCM-AER	Fire (NOx, BC, OC, CO, VOCs)	3
piSST-2xNOX	AGCM-CHEM	Lightning NO _X	3
piSST-2xVOC	AGCM-CHEM	Biogenic VOCs	3

Next AeroCom meetings

- Feb/Mar AeroCom paper write-up workshop Norway
 - (scope 20-30 people ?) doodle? Who is interested?
- EGU Vienna ACTRIS-AeroCom session
- Next 16th AeroCom workshop at FMI Helsinki
 9.-13. October 2017 ??
- Other ??