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Precipitation
High radar reflectivity of rain
drops
→ CloudSat CPR via

2C-PRECIP-COLUMN or
DARDAR_MASK

Liquid-topped clouds
High lidar backscatter at cloud
top from liquid droplets
→ CALIOP via

DARDAR_MASK

Ice clouds
High radar reflectivity of ice
particles
→ CPR via DARDAR_MASK

after Rosenfeld et al. (2008), Science



Rain from pure liquid clouds (“warm rain”) is very rare over the
extratropical continents
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AeroCom project proposal

I Aerosol influence mainly acts on autoconversion in liquid-water clouds in current models

I The more precipitating warm clouds are simulated in a model, the more opportunity aerosols
have to influence the precipitation microphysics

I We hypothesize that the strength of the cloud lifetime effect in models is therefore related to
the warm-rain fraction

I This hypothesis can be tested in the AeroCom models

I Comparing warm-rain fraction in models against satellites may provide an observational
constraint on the cloud lifetime effect
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Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
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Compare satellite climatology to CMIP5 cfSites
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Modeled warm-rain fraction is diverse

ECHAM–HAM
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Scale factor on autoconversion rate: 10−4 ×Qaut reproduces observations

KK(2000) autoconv with scale factor
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Threshold on autoconversion: re > 20 µm

KK(2000) autoconv with re threshold
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These modifications are related
Khairoutdinov and Kogan (2000):

∂qr

∂t
∝ qαl Nβ , α = 2.47, β = −1.79

(1)
Since

ql ∝ r3
e N (2)

the autoconversion rate can be rewritten as
a function of re and either of ql or N:

∂qr

∂t
∝

{
r3α
e Nα+β

r−3β
e qα+βl

(3)

Under the simplifying assumption that re is
uncorrelated with either of ql or N, we
expect the autoconversion rate to scale with
r5.5∼7.5
e , which effectively sets an re

threshold.
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Effect on energy fluxes
I Reducing the warm-rain fraction

significantly detunes the TOA
energy balance→ retuning is
required (primarily SW)

I (Reducing warm-rain fraction
increases large-scale
precipitation)
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Effect on precipitation intensity distribution

I Reducing the warm-rain
fraction also increases the
intensity spectrum

I Shown here are large-scale
precipitation intensity spectra
at different latitude bands

I Decreasing the warm-rain
fraction increases the
probability of intense
large-scale precipitation
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Tuning the warm rain fraction in ECHAM–HAM: conclusions

I Satellite warm-rain fraction can be reproduced in ECHAM–HAM by multiplying the
Khairoutdinov and Kogan (2000) autoconversion rate by 10−4 (default ECHAM–HAM
tuning factor: 4)

I Alternative to this drastic scale factor: re > 20µm threshold on autoconversion

I Effect on radiative balance is large (large increase in cloud lifetime)

I Reducing the warm-rain fraction to match the satellite climatology also increases the intensity
spectrum

I (Some remaining uncertainty on these numbers because of parameter choices in diagnosis of
warm-rain fraction)
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Influence of the warm-rain fraction on ERFaer

Results for ECHAM6.1–HAM2.2, AeroCom II 1850/2000 emissions
ccraut SW PD − PI (W m−2) LW PD − PI (W m−2) SW + LW PD − PI (W m−2)
4 (default) −2.1 1.0 −1.1
10−4 −1.6 0.72 −0.86

I As hypothesized, the configuration with lower warm-rain fraction has a smaller ERFaer

I The change is −0.5 W m−2 SW offset by 0.3 W m−2 LW⇒ plausible that ERFaci change is
a large contribution

I (Low-ccraut configuration has not been retuned and ERFaci has not been diagnosed
separately from ERFaer yet)



Influence of the lifetime effect on warm-rain fraction
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I CAM5 runs with and without
cloud lifetime effect

I In SE and NE Pacific and Atlantic,
lifetime effect decreases the
warm-rain fraction, as expected
from drizzle suppression

I However, there are also regions
where the warm-rain fraction
decreases

I Results are very preliminary (still
based on non-standard diagnostic
algorithm while some more files
transfer)



Preliminary conclusions on the relationship between warm-rain fraction
and aerosol effects

I Changing the warm-rain fraction (in ECHAM–HAM) changes the ERFaci

⇒ As anticipated, warm-rain fraction is sensitive to aerosol effects

I Lots of model diversity; this observable has not been tuned to death
⇒ May be useful as an observational constraint

I Next step: investigate relationship between warm-rain fraction and ERFaci across models

I Participation by other models welcome!
⇒ Required output: snow and rain mixing ratio/flux/path, non-accumulated field, ideally

3h; preferably for a model configuration with known ERFaci



Change of subject: response to Stevens (2015)

I Stevens (2015): zero-dimensional
global-mean aerosol forcing model
with linear ARI and logarithmic ACI
terms based on sulfate aerosol

I In this model, ≈50% of ERFaer is
already realized in 1950; warming in
the early 20th century constrains
present-day ERFaer

I In CMIP5 models, the ACI saturates
less quickly due to transport from
polluted to pristine regions (Rotstayn et
al., 2015)

I Realized ERFaer is only ≈25% in 1950
I No strong constraint on ERFaer from

early-20th-century warming

Kretzschmar et al. (2016), submitted to J. Climate



Summary

I Warm-rain fraction is very low over continents (especially extratropical NH); details:
Mülmenstädt et al. (2015), Geophys. Res. Lett. 42 (15), 6502–6509,
doi:10.1002/2015GL064604

I Warm-rain fraction can be diagnosed in GCMs and may serve as an observational
constraint on precipitation-related processes (including aerosol cloud lifetime effect)

I In ECHAM–HAM, agreement with satellite warm-rain fraction can be achieved with either a
drastic rescaling of KK2000 autoconversion or a less drastic re threshold

I Either method of tuning the warm-rain fraction intensifies the precipitation intensity spectrum
and decreases the ERFaci

http://doi.org/10.1002/2015GL064604
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