Impact of Air Pollution on the Climate and Its Changes in China

Zhanqing Li

Contributors: Team Members at University of Maryland & Beijing Normal University And collaborators as acknowledged in the cited literature

Two Bonus Commercial Slides

To the AEROCOM community, the highly-sought cloudnbase updraft and CCN are now feasible

Satellite estimates of updrafts

Marine St. clouds over

Zheng, Rosenfeld and Li (2016, GRL, revised)

Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

Daniel Rosenfeld^{a,1}, Youtong Zheng^{b,c,d}, Eyal Hashimshoni^a, Mira L. Pöhlker^{e,f}, Anne Jefferson^g, Christopher Pöhlker^e, Xing Yu^h, Yannian Zhu^{d,h}, Guihua Liu^h, Zhiguo Yue^h, Baruch Fischman^a, Zhanqing Li^{b,c,d}, David Giguzin^a, Tom Goren^a, Paulo Artaxoⁱ, Henrique M. J. Barbosaⁱ, Ulrich Pöschl^{e,f}, and Meinrat O. Andreae^e

Rosenfeld et al. (2015, PNAS

World Major Aerosol Plums and Monsoon Systems

Aerosol and Monsoon Climate Interactions in Asia (Li et al. 2016, Rev. Geophys.)

Comparison of Air Quality Trends between China (Left) & US (Right)

<u>Top and bottom LEFT</u>, for China: Various economic indices and trends in satellite-retrieved NO2 column amounts, respectively (from Lin et al. [2013]). <u>Top and bottom RIGHT</u>, for the U.S.: Monthly power plant emissions of SO2 and NOx for five Mid-Atlantic states (adapted from He et al. [2013]); *reduction due to US policy to reduce PM2.5 and below [EPA, 2004]*

East Asian Study JGR Special Section (20 papers) of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE)

East Asian Study of Tropospheric Aerosols& Impact on Regional Climate (EAST-AIRC) Phase II, 2008-2012, JGR Special Section II (35)

East Asian Study of Tropospheric Aerosols& Impact on Cloud and Precipitation (EAST-AIRcp) Phase III, 2013-2017, JGR Special Section (~30 Articles)

Unified Quality-Control, Unified Algorithms, Unified Products

实验地点(Experiment Locations) Aircraft Flies Across Hebei Province Spiral Around Ground stations

Cloud Probing Aircrafts

FSSP-100-ER (1-95 µm)

OAP-2D-GB2 OAP-2D-GA2) Conden

CCN

Impact of Air Pollution or Aerosol on the Following Variables

 Cloud Rainfall Temperature Thunderstorms Wind & Circulation Cloud radiative forcing Monsoon circulation & climate

Aerosol, Radíaíton Budget, and Temperature Changes

Temperature Trends in China

1960-1990 Courtesy of Yihui 1956-2002

1.00

0.80

0.60

0.40

0.20

Separating the effects of greenhouse, urban heat island and aerosol from temperature records

REGIONAL SCALE

Long-term Temperature Changes

Temp Difference Lowland – Mount

Tmax decreases, Tmin stable

Xi'an (Big city) Slight warming daytime Strong Warming night

Long-term Trend of Maximum Temperature

Greenhouse effect has widespread effect of warming, while aerosol effect is mixed due to both direct (aerosolradiation effect) and indirect effect (aerosol-cloudinteraction)

Liu et al. (2016)

Impact of Aerosol on Cloud & Precipitation

Impact of aerosol invigoration effect

Rosenfeld et al (2008, Science)

Li et al (2011, Nature-Geosci)

Impact of Aerosol (loading & type) on Convection, Cloud & Precipitation in China

Difference in the Frequency of Occurrence of Convective Clouds between Polluted & Clean Conditions

Chen et al. (2016, JAS)

Rainfall Trend and Pattern in China

1956-2002

Climate changes in China (2012)

Qian et al. (2009, JGR)

Visibility and Annual Precipitation

Yang et al. (2013a)

Relationship between cloud thickness of raining and aerosol

Increases in rain & thunder days with increasing air pollution in SE China

Yang and Li (2014, JGR)

Long-term and Global Evidences of Aerosol's Impact on Precipitation

Thunderstorm Changes in W. Central China (BC Aerosol Dominant)

Yang et al. (2013b)

Non-linear Relationship Aerosol & Precipitation

Jiang et al. (2016, JGR)

9/20/16

Impact of Aerosol on Thunderstorms & heavy Raín

Pollution Delays Thunderstorms

Guo et al. (2016, JGR)

Lee et al. (2016, JGR)

Visibility

Thunderstorms

Yang et al. (2016, GRL)

Summary

Aerosol and radiation interactions (ARI)

- Surface surface energy fluxes
- Stabilize the atmosphere & weakens circulation
- Reduce low cloud
- Aerosol and cloud interactions (ACI)
 - Decrease rainfall likelihood from low cloud
 - Enhance mixed-phase cloud
- Aerosol-Radiation-Cloud-Interactions (ARCI)
 - Reduce thunderstorms.
 - Delay thunderstorms
 - Migrate heavy rainfall from one location to another

Take-home Message

Aerosol effects need to be accounted for in NWP & GCM

Most Relevant Publications

- Li, Z., et al., 2016: Aerosol and monsoon interactions in Asia, *Rev. Geophys.*, accepted.
- Guo, J., M. Deng, S. S. Lee, F. Wang, Z. Li, P. Zhai, H. Liu, W. Lv, W. Yao, and X. Li, 2016: Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses, *J. Geophys. Res. Atmos.*, 121, 6472-6488, doi:10.1002/2015JD023257.
- Lee, S.-S., J. Guo, and Z. Li, 2016: Delaying precipitation by air pollution over the Pearl River Delta. Part II: Model simulations, *J. Geophys. Res. – Atmos.*, doi/10.1002/2015JD024362
- Chen, T., J. Guo, Z. Li, C. Zhao, H. Liu, M. Cribb, F. Wang, and J. He, 2016: A CloudSat perspective on the cloud climatology and its association with aerosol perturbations in the vertical over eastern China, *J. Atmos. Sci.*, 73, doi:10.1175/JAS-D-15-0309.
- Jiang, M., Z. Li, B. Wan, and M. Cribb, 2016: Impact of aerosols on precipitation from deep convective clouds in Eastern China, *J. Geophys. Res. Atmos.*, 121, doi: 10.1002/2015JD024246.
- Fan J, D Rosenfeld, Y Yang, C Zhao, LR Leung, and Z Li. 2015. Substantial Contribution of Anthropogenic Air Pollution to Catastrophic Floods in Southwest China. Geophysical Research Letters, DOI: 10.1002/2015GL064479.
- Wu GX, Li ZQ, Fu C B, Zhang X Y, Zhang R Y, Zhang R H, Zhou T J, Li J P, Li J D, Zhou D G, Wu L, Zhou L T, He B, Huang R H. 2016, Advances in studying interactions between aerosols and monsoon in China, Sci. China Earth Science, 59, 1-16, doi: 10.1007/s11430-015-5198-z.
- Li, Z., F Zhao, J Liu, M Jiang, C Zhao, and M Cribb. 2014. Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and ground-based measurements. Journal of Geophysical Research Atmospheres, 119(9), doi:10.1002/2013JD021053.
- Li, Z., F. Niu, J. Fan, Y. Liu, and D. Rosenfeld, Y. Ding (2011), The long-term impacts of aerosols on the vertical development of clouds and precipitation, Nature-Geoscience (article), doi: 10.1038/NGEO1313.
- Li, Z., K.-H. Lee, J. Xin, Y. Wang, W.-M. Hao, 2010, First observation-based estimates of aerosol radiative forcing at the top, bottom and inside of the atmosphere, *J. Geophys. Res.*, 115, D00K18, doi:10.1029/2009JD013306.
- Tao, W.-K., J.P. Chen, Z. Li, C. Wang, C. Zhang, 2012, Impact of aerosols on convective clouds and precipitation, *Rev.* of *Geophy.*, 2011RG000369.
- Yang, X., M. Ferrat, and Z. Li, 2013a: New evidence of orographic precipitation suppression by aerosols in central China, *Meteorol. Atmos. Phys.*, doi:10.1007/s00703-012-0221-9.

Aerosol-Boundary-layer-Convection Interaction Experiment (ABCIE) Hebei, China, May 1 – June 15, 2016 Objectives:

- Understanding aerosol-PBL interactions (API)
- 2. Understanding the impact of the API on convection, convective clouds and thunderstorms
- 3. Understanding aerosol, topography and cloud interactions

MWRP (China)

Substantial Contribution of ARI to the Catastrophic Floods in Southwest China

2013 Southwest China flood

Fan J. et al., (2015, GRL)

- The worst in five decades
- Sichuan mountainous regions located at the northwest of Sichuan Basin suffered the extremely heavy rain and the most damage (~ 94 cm of rain from 8–9 July at Dujiangyan, Beichuan).

Main storm period: 2000, 8th to 0700 July 9th

