The MAC AEROSOL climatology Max-Planck Aerosol Climatology

Stefan Kinne, MPI-Meteorology

ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2015

- why: get a general idea on aerosol column properties as function of month and regions
- how: take advantage of observational accuracy and of regional context / coverage by modeling
 merged monthly maps = MAcv2 climatology

ocean obs
 MAN

land obs

trusted **observations** ! annual averages

FMF

ANG (div by 2)

merged properties

at 550nm (unless otherwise indicated)

- AOD
- AAOD
- AOD, 440nm
- AOD, 870nm
- AODf (r<.5um)
- AODc (r>.5um)
- AAODf (mainly BC)
- AAODc (mainly DU)

Angstrom parameter Ang = - In (AOD, 440/ AOD, 870) / In (440/870)

fine-mode AOD fraction FMF = AOD,f / (AOD,f + AOD,c)

Ang +FMF \rightarrow fine reff \rightarrow CCN

AeroCom

fine-mode AAOD fraction = absFMF = AAOD,f / (AAOD,f + AAOD,c)

MACv2 merged on modeling annual averages

fine (r<.5um) vs COarse (r>.5um)

1.guess for satellite models SSAf = sff *1.0 [Rf,imag=0] + (1-sff) * (0.76) [RF,imag=0.05]

expansion with modeling help

- to make it useful for climate applications
 - inter-annual variability
 - only anthropogenic is allowed to change – coarse mode and PI fine-mode unchanged
 - spectral variability (0.25 to 100µm wavelength)

 derived aerosol typing with pre-scribed aerosol component properties

- vertical variability (CALIPSO stats preferred)
 separately for fine-mode and coarse mode
- microphysics (fine-mode size → CCN conc.)
 reff-fine, T, supersat, kappa, dry→wet at 1km

anthropogenic – via PD & PI modeling only 25% of today's AOD is anthrogogenic

anthropogenic AOD fraction of today's fine-mode AOD \rightarrow

...based on gl.model simulations of the fine-mode AOD at pre-industrial times (year 1850) and for today's conditions

0.2500

otal AOD

0.163

0.085

0.124

0.0000

0.5000

0.7500

temporal – via modeled emission scaling ... if we believe sulfate IPCC RCP futures (no nitrates)

fine-mode properties AODf(z) + re (ANG, AODf) →

selected applications

- forcing
 - comparing direct vs indirect
- aerosol effect
 - for atmosphere (heating \rightarrow dynamics)
 - on the surface radiation budget (flux reduction)
- aerosol forcing over time
 - anthropogenic has reached a maximum

comparing – direct vs indirect

• at TOA: indirect forcing is dominant today's total forcing today's direct forcing today's indirect forcing р đ ;⊨ -0.309¹ -0.19 -1.06 -0.87 -1.36 -1 1 -0.072 -0.687 -0.756 -8.000 -4.000 0.0000 4.000 W/m2

- in atmosph: direct (heat) effect is stronger
- at surface: direct effect is much stronger

direct effects in atmosphere

direct effects on surface budgets

summary

- MAC climatology is freely available
 - ftp ftp-projects.zmaw.de/aerocom/climatology/MACv2_2015
- applications demonstrated usefulness
 - regional, seasonal, temporal varying impacts
 - indirect impact dominates at TOA
 - direct impact dom. at surface and atmosphere
- major uncertainties
 - PI reference (to define 'anthropogenic')
 - composition (absorption properties)

complicate – spectral / comp variability

