Multi-decadal trends of solar radiation reaching the surface: What is the role of aerosol?

Mian Chin Asa Goddard Space Flight Center

Thomas Diehl, Huisheing Bian, Hongbin Yu, Tom Kucsera, Martin Wild, Stefan Kinne, Luca Pozzoli, Kostas Tsigaridis, Susanne Bauer, Nicolas Bellouin, Toshihiko Takemura

2016 AeroCom workshop, Beijing China

Introduction

- Incoming solar radiation drives the Earth's climate system
- Globally, about 53-55% of the incoming solar radiation reaches the Earth's surface, the rest being reflected or absorbed by the atmosphere
- Long-term surface observations have shown decrease or increase trends of solar radiation reaching the surface (R_s), aka "dimming" or "brightening", in difference regions
- Several previous studies have suggested that the R_s trends are determined by the changes of anthropogenic aerosols in those regions
- This work is to assess the role of direct radiative effects of aerosols on the so-called solar "dimming" and "brightening" trends in different regions of the world

Today's talk

Shortwave (SW) solar radiation budget

- Incoming solar radiation at TOA (R_{τ}) Absorption/ reflection by clouds Absorption by $H_2O, CO_2, O_3 +$ scattering by air Absorption/reflection by aerosols Reaching surface (R_s)
- The change of R_s from the AeroCom II hindcast model simulations (1980-200x) and compare the results with observations from the surface network
- Using the GOCART model to attribute the "dimming/ brightening" trends to the changes of aerosols through the direct radiative effects

AeroCom II hindcast model simulations

Model	Abbr.	Anthro. emission	Volc. emission	Period	Rs	Rs,cs	Rs,csdif
ECHAM5-HAMMOZ.A2.HCA-0	ECH-0	A2-MAP	No	1980-2005	Yes	No	No
HadGEM2-ES.A2.HCA-0	HAD-0	A2-MAP	Yes	1980-2006	Yes	Yes	Yes
GISS-modelE.A2.HCA-IPCC	GIE-i	A2-ACCMIP	No	1980-2008	Yes	Yes	No
GISS-MATRIX.A2.HCA-IPCC	GIM-i	A2-ACCMIP	No	1980-2008	Yes	Yes	No
SPRINTARS-v384.A2.HCA-0	SPR-0	A2-MAP	Yes	1980-2008	Yes	Yes	No
SPRINTARS-v384.A2.HCA-IPCC	SPR-i	A2-ACCMIP	Yes	1980-2008	Yes	Yes	No
GOCART-v4.A2.HCA-0	GO4-0	A2-MAP	Yes	1980-2007	Yes	Yes	Yes
GOCART-v5 (not in AeroCom II)	GO5-i	A2-ACCMIP	Yes	1980-2009	Yes	Yes	Yes
Rs = all sky total SW radiation at the surface. Rs,cs = clear sky, Rs,csdif = clear sky diffuse							

Radiation quantity used

- We will show comparisons only for all sky conditions, because the "clear sky" definition is quite different among models, and only two models submitted clear sky diffuse/direct SW fluxes
- To avoid the temporal and/or spatial sampling bias, we use the "normalized" quantity such that the surface radiation is divided by the incoming solar radiation at TOA, R_T
- The "dimming" or "brightening" is shown as the anomaly, i.e. the deviation of R_s/R_τ in any particular year from a "climatological" value
- => Comparisons of anomaly of R_S/R_T at GEBA sites

Comparisons of changes of R_s/R_T at 4 GEBA sites over Americas and Europe

- General "brightening" trends over North America and Europe from GEBA data
- Models are more consistent over the continents but show large diversity over the Caribbean site

Comparisons of changes of R_s/R_T at 4 GEBA sites over Asia and Africa

- General "brightening" trends over Japan and Mongolia, "dimming" over Inida and Zimbabwe
- Models show large diversity over India, with trends from dimming to no change even with the same emissions

The question: How much can we attribute the dimming/ brightening R_s trends to the change of aerosols?

- We use the NASA MERRA system (for clouds, H₂O, CO₂, and O₃) and GOCART model simulated aerosols to answer the above question by the model experiments:
 - Calculating R_s with all aerosols, clouds, and other atmospheric constituents
 - Same as above but without aerosols

Comparisons of changes of R_S/R_T at 4 GEBA sites over Americas and Europe

- General "brightening" trends over North America and Europe
- However, the trends is statistically the same without aerosols DRE

Comparisons of changes of R_S/R_T at 4 GEBA sites over Asia and Africa

- General "brightening" trends over Japan and Mongolia, "dimming" over India and Zimbabwe
- However, the trends is statistically the same without aerosols DRE

Compared to clouds, aerosol effects on radiation is much smaller...

- Under all sky conditions, even with cloud amount from MERRA being too low, aerosol effects on R_s over ocean is <10% of cloud effects
- Aerosol effects only exceeds clouds over the "dust belt" over land where cloud fraction is low. Over polluted NH land, even over East and South Asia, reduction of R_s due to clouds is more than that due to aerosols

Global maps of changes between 2008-09 and 1980-81

Remarks

- Under all sky condition: Clouds plays much important role in regulating the solar radiation reaching the surface
- Under cloud-free sky condition: Aerosol direct radiative effects are more clear, especially in diffuse radiation

Big questions unanswered:

- What causes the cloud trend?
- How much is the change of cloud mediated by aerosols through aerosol-radiation interaction and aerosol-cloud interaction?
- How does climate change affect the cloud and aerosol trends and their interactions?
- Next model experiments should include realistic aerosol-cloudradiation interactions in a climate changing environment

Aerosol-cloud-radiation interactions

Figure adapted from Boucher et al., 2013 with modifications

More AeroCom model experiment?

- GCM simulation of aerosol-cloud-radiation interactions
 - BASE
 - FIXSST
 - FIXAER
 - FIXARI
 - FIXACI
- These simulations will allow attributing the effect forcing of global warming or aerosol on cloud change
- Could have a side discussion on specifications if there is enough interest