

First AEROCOM Worksop June 2-3, Paris

Simulations of Sizesegregated Aerosols in the Atmosphere with GCM/CAM Sunling Gong

Model Structure

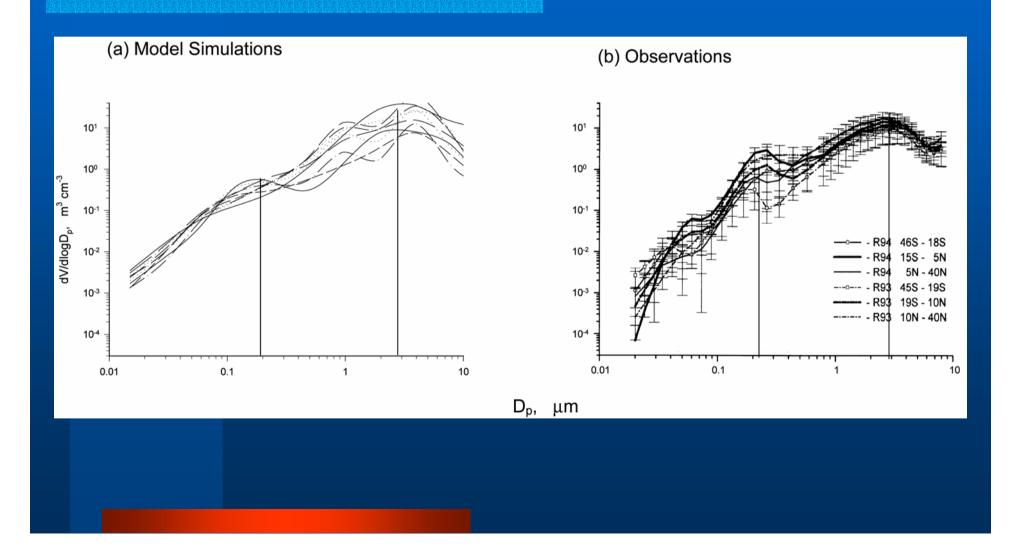
Canadian GCM Canadian Aerosol Module (CAM) -Sea-salt -Sulphate -Soil Dust -Black Carbon -Organic Carbon

Configurations

Aerosols	12 bin sectional model: r=0.005 – 20.48 µm [dry]
Sources	Sulphate:anthropogenic SO_2 and SO_4 (GEIA 1B: 2-level) oceanic DMS concentration (Kettle <i>et al.</i>) land H_2S (Benkovitz <i>et al.</i>)Sea-salt:size-segregated, Gong BC/OC:BC/OC:fossil fuel (Cook <i>et al.</i>) bio-mass (Liousse and Penner <i>et al</i>) boreal (Lavoue <i>et al</i>)Soil Dust:size-segregated, Marticorena and Bergametti
Prognostic Variables	Aerosol mass mixing ratio in each size bin, cloud water and ice, DMS, SO ₂ , H_2S and $H_2SO_4[g]$
Clear-sky processes	Nucleation, condensation, coagulation, on-line S chemistry with MOZART's OH and NO_3
Wet Processes	Gong <i>et al</i> : Below- and In-cloud scavenging Lohmann : Explicit cloud scheme Cloud activation and cloud S chemistry with MOZART's O_3 , H_2O_2 and HNO ₃ , and NH ₃
Dry Deposition	Size-dependent particle and SO ₂
Resolution	128×64×32, 15 min

AEROCOM Run Status

Monthly Daily



Summary

 Unique features -Size-segregated -Interactions Future -Radiative forcing –Impact on clouds

CAM in GCM – Global Sea-salt/Sulphate

