5th AEROCOM Meeting Virginia Beach October 18, 2006

Constraining aerosol-cloud interactions for future scenarios

Surabi Menon

Lawrence Berkeley National Laboratory, CA

Acknowledgements:

A Del Genio, D Koch, S Bauer, L Nazarenko (NASA GISS)

N Unger (U. Vermont)

D Streets (ANL)

R Bennartz (U. Wisconsin)

S Kinne (MPI, Hamburg)

Y Kaufman

Present-day Climate Constraints with Satellites

We focus on Year 2000 and use MODIS and AMSR to analyse signatures of aerosol-cloud interactions.

Future Climate : 2030 - PD

Future Climate : 2030 - PD

Indirect effect = $-$ **0.64 W** m⁻²

LWP $(g/m2)$

Total Cloud cover (%)

Future Climate : 2030 - PD

Future Climate -Slab Ocn: 2030 - PD

MODIS Detection of Aerosols and Clouds

Aerosol number and type

Cloud coverage

Based on Kaufman et al. 2005, PNAS

SPECIFICS:

Atlantic Ocean Region

Daily 1° June-July-August 2002

Shallow water clouds (Cloud top pressure > 640hPa)

Partial cloud covered pixels Both aerosols and cloud properties retrieved simultaneously

Aerosol optical depth < 0.6

Cloud optical depth > 3

Simulations

Process parameterizations and Dynamics

- **Exp N: Std GISS simulation with aerosol direct effects only**
- **Exp C: Like Exp N but includes aerosol effects on warm stratus and cumulus clouds**
- **Exp CN: Like Exp C but GCM winds are nudged to reanalysis winds**

Aerosol-Cumulus Interactions

Detrained condensate (mg m⁻³) for present day (PD) and pre-industrial (PI) aerosol emissions at 850 hPa

Convective systems linked to large-scale stratiform

cloud systems via detrained water & moisture.

(level of maximum detrainment) for CSIRO and GISS.

Results are for aerosol effects on cumulus clouds only.

(Menon and Rotstayn, 2006, Clim. Dyn.)

Simulation Specifics

Semi-prognostic CDNC : based on aerosol, cloud cover and turbulence Includes dispersion effects on cld droplet radius (Liu et al. 2005).

CDNC for stratus clouds based from *Gultepe and Isaac* **(***1999, I J Clim.***).**

$$
CDNC_{Land} = 298 \times \log_{10} Na_{Land} - 595
$$

$$
CDNC_{Ocean} = 162 \times \log_{10} Na_{Ocean} - 273
$$

Nal and Nao : aerosol number for land or ocean, respectively. Autoconversion scheme of Beheng (1994)

(Menon and Del Genio, 2006)

CDNC for convective clouds based from *Segal et al.* **(***2004, QJRMS***).** $CDNC$ *Land*=174.8 + 1.51 $N_{al}^{0.886}$ $\text{CDNC}_{Ocean} = -29.6 + 4.92 N_{ao}^{0.694}$

Autoconversion scheme converts condensate to precip. if liquid water > value for droplet size =14 µ**m. (Based on Rotstayn and Liu, 2005)** ֖֖֖֖֖֖֖֖֖֪֪֦֖֖֖֧֖ׅ֖֧֖֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֚֡֬֝֟֓֞֡֞֡֞֬֝֬֝֬֝֬֝֬֝֬֝֝֬֝֬֝֬֝֬֝֬֝֬֞֝֬֝֬֝֬֝֬֝֬֝֬֝

(Described in Menon and Rotstayn, 2006, Clim Dyn)

We examine 7 variables from MODIS and GCM to detect signatures of aerosolcloud interactions.

- Aerosol Optical Thickness -AOT
- Cloud Top Temperature (K) -CTT
- Cloud Top Pressure (hPa) -CTP
- Cloud Fraction
- Cloud Effective Radius (µm) Reff
- Cloud Optical Thickness COT
- *Water Path (g m-2)*

Additionally, we examine temperature, winds and vertical velocity fields from NCEP reanalysis and GCM.

GCM values are sampled at cloud top and are instantaneous daily values.

Aerosol optical thickness (AOT)

Satellite data (Total AOT at 0.55 μ m) indicate presence of dust and biomass aerosols

Exp C AOT

GCM AOT for clear-skies do not include dust aerosols that are in the 5-20N region.

Dust assumed to not affect cloud.

GCM low bias estimated to be a result of aerosol sizes assumed. AOT is scaled by cloud fraction rather than values of 0 or 1.

Mean values for Reff, LWP and Cloud Optical Depth

Correlation coefficients

MODIS

Correlation coefficients for variables

Slopes - Strength of the indirect effect

Slopes for log-linear relationships.

Clean and Polluted Conditions

AOT < 0.06

Can AMSR be used to constrain LWP and CDNC?

Mean values for CDNC, Reff, and Cld Optical Depth

Top = MODIS-Aqua $Bottom = Exp C$

CDNC and $H = f(LWP, CC \text{ and } COD)$ $H = f(LWP, condensation rate)$ CDNC = f(COD, LWP, CC, condensation rate) (Bennartz, 2006, JGR)

Can AMSR be used to constrain LWP and CDNC?

Mean values for LWP, Cloud depth and Cloud cover

Top and middle = MODIS-Aqua and AMSR-E $Bottom = Exp C$

Strength of the indirect effect

Meteorological fields

Meteorological fields for Exp C

Low AOT Figh AOT

MODIS data: Negative/Positive corr. bet. Reff/CC and AOT. LWP-AOT variations indicate a decrease in LWP (weak) with increasing AOT.

For GCM:

- • **Small decrease in Reff with increasing aerosols for aerosol indirect effect.**
- • **Increase in cloud optical depth in GCM more pronounced than in MODIS;**
- • **Some of the increase (including cloud cover) are from dynamical changes.**

Somewhat similar to results from Lohmann et al. (2006), Storelvmo et al. (2006).

From NCEP and MODIS, subsidence did not play an important role in affecting AOT.

In areas of subsidence, cloud cover increases with AOT.

50% of GCM changes are from aerosol-induced microphysical changes (τ. AOT slopes).

Indirect effect may not be overestimated.