5th AEROCOM Meeting Virginia Beach October 18, 2006

Constraining aerosol-cloud interactions for future scenarios

Surabi Menon

Lawrence Berkeley National Laboratory, CA

Acknowledgements:

A Del Genio, D Koch, S Bauer, L Nazarenko (NASA GISS)

N Unger (U. Vermont)

D Streets (ANL)

R Bennartz (U. Wisconsin)

S Kinne (MPI, Hamburg)

Y Kaufman

Present-day Climate Constraints with Satellites

The magnitude of aerosol-cloud subject to a large range of uncer	interactions remains unconstrained and tainty: -0.3 to -4.0 W m ⁻²
We would like to make future p How realistic would that be?	redictions for different aerosol scenarios.
To constrain GISS GCM predic scenarios we use satellite data to	tions of aerosol indirect effect for future o understand present-day simulations.
We examine 3 time intervals:	1980
	<u>2000</u>
	2030A1B and
	alternate 2030A1B scenarios

We focus on Year 2000 and use MODIS and AMSR to analyse signatures of aerosol-cloud interactions.

Future Climate : 2030 - PD

Future Climate : 2030 - PD

Indirect effect = -0.64 W m⁻²

LWP (g/m2)

Total Cloud cover (%)

Future Climate : 2030 - PD

Future Climate -Slab Ocn: 2030 - PD

MODIS Detection of Aerosols and Clouds

Aerosol number and type

Cloud coverage

Based on Kaufman et al. 2005, PNAS

SPECIFICS:

Atlantic Ocean Region

Daily 1° June-July-August 2002

Shallow water clouds (Cloud top pressure > 640hPa)

Partial cloud covered pixels Both aerosols and cloud properties retrieved simultaneously

Aerosol optical depth < 0.6

Cloud optical depth > 3

Simulations

Process parameterizations and Dynamics

- **Exp N:** Std GISS simulation with aerosol direct effects only
- Exp C: Like Exp N but includes aerosol effects on warm stratus and cumulus clouds
- Exp CN: Like Exp C but GCM winds are nudged to reanalysis winds

Aerosol-Cumulus Interactions

Convective systems linked to large-scale stratiform cloud systems via detrained water & moisture.

Detrained condensate (mg m⁻³) for present day (PD) and pre-industrial (PI) aerosol emissions at 850 hPa (level of maximum detrainment) for CSIRO and GISS.

Results are for aerosol effects on cumulus clouds only.

(Menon and Rotstayn, 2006, Clim. Dyn.)

Simulation Specifics

Semi-prognostic CDNC : based on aerosol, cloud cover and turbulence Includes dispersion effects on cld droplet radius (Liu et al. 2005).

CDNC for stratus clouds based from Gultepe and Isaac (1999, I J Clim.).

$$CDNC_{Land} = 298 \times \log_{10} Na_{Land} - 595$$
$$CDNC_{Ocean} = 162 \times \log_{10} Na_{Ocean} - 273$$

Nal and Nao : aerosol number for land or ocean, respectively. Autoconversion scheme of Beheng (1994)

(Menon and Del Genio, 2006)

CDNC for convective clouds based from Segal et al. (2004, QJRMS). $CDNC_{Land} = 174.8 + 1.51N_{al}^{0.886}$ $CDNC_{Ocean} = -29.6 + 4.92N_{ao}^{0.694}$

Autoconversion scheme converts condensate to precip. if liquid water > value for droplet size =14 μ m. (Based on Rotstayn and Liu, 2005)

(Described in Menon and Rotstayn, 2006, Clim Dyn)

We examine 7 variables from MODIS and GCM to detect signatures of aerosolcloud interactions.

- Aerosol Optical Thickness -AOT
- Cloud Top Temperature (K) -CTT
- Cloud Top Pressure (hPa) -CTP
- Cloud Fraction
- Cloud Effective Radius (µm) Reff
- Cloud Optical Thickness COT
- Water Path $(g m^{-2})$

Additionally, we examine temperature, winds and vertical velocity fields from NCEP reanalysis and GCM.

GCM values are sampled at cloud top and are instantaneous daily values.

Aerosol optical thickness (AOT)

Satellite data (Total AOT at $0.55 \ \mu m$) indicate presence of dust and biomass aerosols

Exp C AOT

GCM AOT for clear-skies do not include dust aerosols that are in the 5-20N region.

Dust assumed to not affect cloud.

GCM low bias estimated to be a result of aerosol sizes assumed. AOT is scaled by cloud fraction rather than values of 0 or 1.

Mean values for Reff, LWP and Cloud Optical Depth

Mean	MODIS	Exp N	Exp C E	xp CN
ΑΟΤ	0.15	0.092	0.0924 0.	10
Reff	16.9	12.8	12.5 12	2.4
LWP	81.0	136.0	83.2 82	2.4
СС	0.48	0.44	0.45 0.	44
τ_{c}	8.54	12.7	9.50 9.	84
CTT	287	289	289 28	39
СТР	855	896	894 89	97

Correlation coefficients

MODIS

Correlation coefficients for variables

Slopes - Strength of the indirect effect

Slopes for log-linear relationships.

Slope	MODIS	Exp N	Exp C	Exp CN
R _{eff} -AOT	-2.2	0.15	-0.26	-0.31
LWP-AOT	-6.5*	1.42	-1.58	-3.15
CC-AOT	11.4	-5.33 1.10	-5.19 1.12	-6.41 0.61
τ _c -AOT	0.31	0.58	0.85	0.89
SWTOA-AOT	NA	-0.58	-0.91	-0.69
CDNC-AOT	NA	0.70	5.85	6.34

Clean and Polluted Conditions

AOT < 0.06

ExpCN 0.186 11.9 80.8

	AOT	Reff	LWP	COD	CC	SWT	CDNC
MOD	0.041	18.7	79.7	6.34	33.3	-	-
ExpN	0.027	12.6	133	12.3	47.0+7.78	-1.97	63
ExpC	0.026	12.7	82.8	8.72	48.2+7.83	-1.48	39
ExpCN	0.029	12.4	83.8	9.05	48.5+8.68	-2.42	43
AOT > 0).06						
	AOT	Reff	LWP	COD	CC	SWT	CDNC
MOD	0.173	16.6	81.3	7.16	51.2	-	-
ExpN	0.186	13.0	140	13.4	38.8+6.26	-2.93	64
ExpC	0.179	12.4	83.6	10.6	39.9+6.22	-3.87	49

10.7 38.2+6.47

-3.59

56

Can AMSR be used to constrain LWP and CDNC?

Mean values for CDNC, Reff, and Cld Optical Depth

Top = MODIS-Aqua Bottom = Exp C CDNC and H = f(LWP, CC and COD) H = f(LWP, condensation rate) CDNC = f(COD, LWP, CC, condensation rate) (Bennartz, 2006, JGR)

Can AMSR be used to constrain LWP and CDNC?

Mean values for LWP, Cloud depth and Cloud cover

Top and middle = MODIS-Aqua and AMSR-E Bottom = Exp C

Mean	MODIS	AMSR	Exp N	Exp C
CDNC	79		63	43
Reff	14.3		12.6	12.2
LWP	69.8	69.5	125	75.9
τ_{c}	8.59		12.3	9.21
Cld DZ	219		564	560

Strength of the indirect effect

Meteorological fields

Meteorological fields for Exp C

High AOT

MODIS data: Negative/Positive corr. bet. Reff/CC and AOT. LWP-AOT variations indicate a decrease in LWP (weak) with increasing AOT.

For GCM:

- Small decrease in Reff with increasing aerosols for aerosol indirect effect.
- Increase in cloud optical depth in GCM more pronounced than in MODIS;
- Some of the increase (including cloud cover) are from dynamical changes.

Somewhat similar to results from Lohmann et al. (2006), Storelvmo et al. (2006).

From NCEP and MODIS, subsidence did not play an important role in affecting AOT.

In areas of subsidence, cloud cover increases with AOT.

50% of GCM changes are from aerosol-induced microphysical changes (τ_c -AOT slopes).

Indirect effect may not be overestimated.