

Proposal: The multi-model perturbed parameter ensemble (MMPPE)

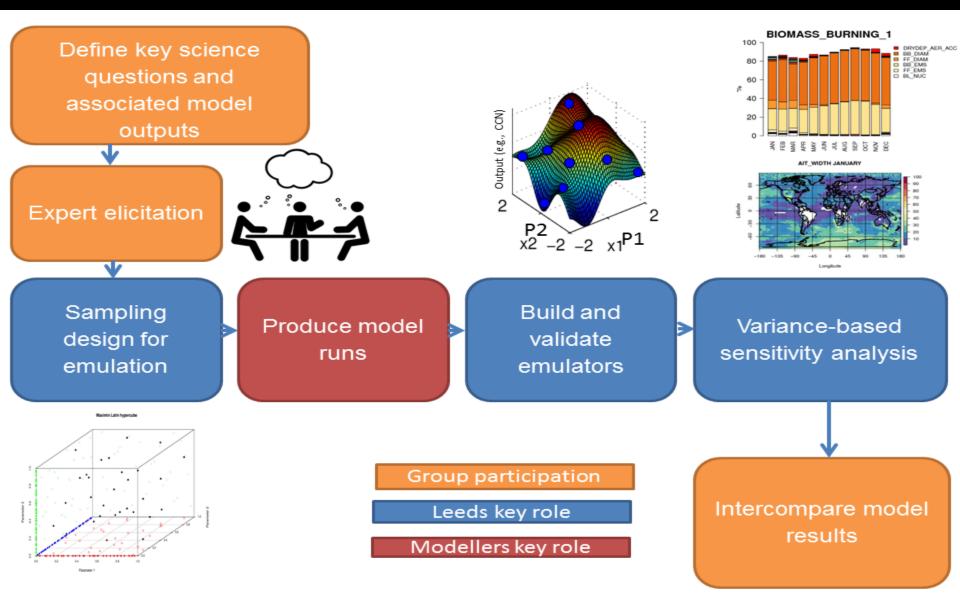
Lindsay Lee

l.a.lee@leeds.ac.uk

Ken Carslaw, Philip Stier

The proposal objectives

For the first time, to quantify and understand both structural and parametric uncertainty via MMPPE


- To carry out a co-ordinated perturbed parameter ensemble in multiple global aerosol models
- To use the PPEs to carry out sensitivity analysis in individual models
- To use the sensitivity results to help understand model diversity

The proposal aims

To provide a deeper understanding of the sources of global aerosol model diversity – where does the variance come from?

- To build on and connect previous AeroCom experiments with a new statistical design
- To aid model development
- To produce better understood aerosol radiative forcing uncertainty estimates

Approach

Number of simulations required

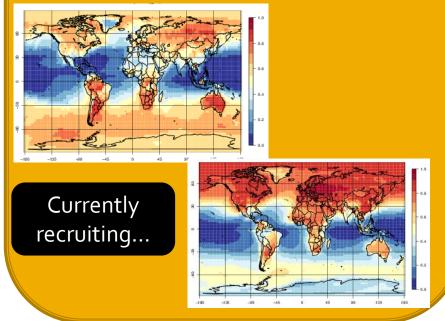
- The number of simulations required depends on 3 key things:
 - The key model outputs
 - Some model outputs require paired period or multi-year simulation
 - The number of uncertain parameters in the study
 - Need to design the ensemble to fill the 'active' dimensions adequately
 - The signal to noise ratio of the model response
 - This is dependent on the model set-up and the model output

Model set-up

- Free-running atmosphere-only simulations require multiple years (> n years) to extract the perturbation signal from the meteorological noise
- Nudged runs reduce the noise BUT need >2 years simulation to extract any signal
- CTM or nudged double-call eliminate this noise leaving only the perturbation signal

Science questions therefore dictate the model set-up, run length and therefore the # of parameters that can be perturbed

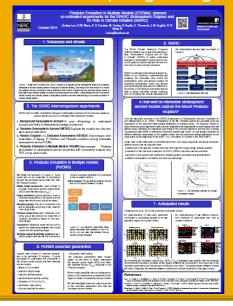
Simulation budget examples


- AOD 10 parameters, 100 PPE members, 1 year simulations = 100 years
- Direct forcing Same x 2 (paired PI and PD) = 200 years
- ERF 10 parameters, 100 PPE members, 3 year simulation = 300 years
- AerChemMIP requires 2640 years to participate in tiers 1,2,3

Other MMPPE projects I'm involved in...

Chemistry MMPPE

NERC-funded Lancaster led


5 chemistry models, ~20 parameters, co-ordinated sampling design

PoEMS – MMPPE of Pinatubo eruption

Part of SPARC SSiRC experiments

Models to perturb 3,5,7 parameters with a co-ordinated sampling design

AeroCom related MMPPE

- Currently setting up UKCA PPE with ~30 parameters to run for 2008
- Philip has set-up ECHAM6-HAM2 to coordinate with UKCA PPE

Will soon have co-ordinated PPE with ~30 parameters from which I will emulate and carry out sensitivity analysis to understand diversity in two models

Participation in this larger PPE is not exclusive

The way forward for AeroCom

MMPPE has to be interactive

- Read the proposal document and sign up
- Discuss (and agree) key science questions and feasibility
- Telecon or f2f meeting to discuss (and agree) associated set of uncertain parameters to be perturbed
- Elicit uncertainty distributions on the parameters

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V.: Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, *Atmos. Chem. Phys.*, 11, 12253-12273, doi:10.5194/acp-11-12253-2011, 2011.

Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.: Mapping the uncertainty in global CCN using emulation, *Atmos. Chem. Phys.*, 12, 9739-9751, doi:10.5194/acp-12-9739-2012, 2012.

Lee, L. A., Pringle, K. J., Reddington, C. L., Mann, G. W., Stier, P., Spracklen, D. V., Pierce, J. R., and Carslaw, K. S.: The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei, *Atmos. Chem. Phys.*, 13, 8879-8914, doi:10.5194/acp-13-8879-2013, 2013.

K.S. Carslaw et al. Large contribution of natural aerosols to uncertainty in indirect forcing, Nature 503 (2013): pp. 67-71.

