

Model sensitivity and uncertainty analysis Towards AeroCom MMPPE

Ken Carslaw

Lindsay Lee, Jill Johnson, Leighton Regayre

What is a PPE?

A *Perturbed Parameter Ensemble* designed in such a way that we can *map the response surface* of a model using emulators

Lee, L.A. et al., Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, ACP 2011.

1) Very efficiently explore single and multiple process sensitivities and interactions

2) Quantify uncertainty in model responses

Johnson, J. et al., Evaluating uncertainty in convective cloud microphysics using statistical emulation, JAMES, 2013.

3) Quantify model uncertainty by Monte Carlo sampling from the response surface

3) Quantify model uncertainty by Monte Carlo sampling from the response surface

4) Constrain the model against measurements

What have we done so far with GLOMAP?

First indirect effect 1750-2000

First indirect effect Recent decades and regional

b)

CAE radiative forcing W m⁻²

ERF uncertainty (microphysics, clouds, optical & physics params)

What's the cost?

- From our experience, you need ~10 simulations per perturbed parameter
- Linear scaling: so 100 runs for 10 parameters
- Our studies have perturbed 28 and 31 parameters
- Climate model will perturb 27 parameters related to emissions, microphysics and optics, clouds, model physics
- But this delivers HUGE information

Nudged single versus double call (1 month)

Fractional changes when SO₂ emissions perturbed

What is our "uncertainty reduction methodology"?

The best we can do

Many models covering all conceivable structural and parametric uncertainties This is an enormous problem! There will be many combinations of plausible models

A definition of forcing uncertainty

 The range of predictions of a model accounting for all possible uncertain model quantities (parameters) and structures, after rejecting models that are implausible compared to measurements

Steps towards exploring the full model uncertainty space

Restricted to:

- A nudged global aerosol model (GLOMAP)
- Uncertain parameter values
- Aerosol processes and emissions
- 28 parameters related to aerosol microphysical processes, removal rates and emissions

Multi-dimensional parameter sampling

Pdfs of CCN in every grid box

This is not CCN variability, it's parametric uncertainty in the monthly mean CCN state

Albedo forcing and (prior) uncertainty

Identifying plausible models

Observationally constrained CCN and forcing

Number of CCN measurements (each with ±30% uncertainty)

"Measurements" over S. Ocean drawn from one ensemble member

6

Constrained CCN and forcing

Prior and constrained distributions

Constrained using a CCN "measurement" with ±40% uncertainty

Constrained CCN and forcing

Multi-dimensional uncertainty constraint

Parameter 2

Multi-dimensional uncertainty constraint

A slice through the 28-dimensional emulator in one grid box

Equifinality divergence

- In a model with many compensating uncertainties, there are many ways to achieve equally plausible agreement with state variable measurements – Equifinality
- Different parts of parameter space can evolve differently
- Forcing is a response to changes in emissions, so a well constrained model state does not imply a well constrained forcing

Keith Beven, A manifesto for the equifinality thesis, J. Hydrol. (2006).

What about multi-model ensembles?

Each model has chosen a single (presumably plausible) location in multi-dimensional uncertainty space

Extension to cloud-scale processes

What can be done to make better progress?

• Treat uncertainty as the scientific problem to be understood and solved

Uncertainty modeller

Process modellers

http://www.adrants.com/images/

What can be done to make better progress?

- Treat uncertainty as the scientific problem to be understood and solved
- Understand how <u>state variable measurements</u> constrain uncertainty
 - E.g., AOD, COD etc are likely to suffer from equifinality
- Understand how <u>response measurements</u> (e.g., dln N_d/dln τ) constrain uncertainty
- Determine how well our current observing systems constrain uncertainty, not just how well a particular model agrees with the measurements
- Work towards a small number of plausible models for which we understand the uncertainties

Summary

- Knowledge uncertainty reduction doesn't match model uncertainty reduction. This is partly due to a lack of uncertainty reduction methodology
- Emulators enable the full uncertainty distribution of a model to be quantified

- Forcing is not directly measureable. Observational constraint of observable state variables doesn't constrain forcing as much as expected
- With many uncertainties, there are many equally plausible (equifinal) models within the uncertainty of the measurements. Equifinal models diverge.

Constrained CCN and forcing

Constrained CCN and forcing

What is the situation now?

 Not a good constraint on model state variables

 Not a good constraint on model responses

Model skilfulness

Gavin Schmidt The Emergent Patterns of Climate Change (March 2014)

"Models are skilful if they tell you more information than you had otherwise."

- (i) Ozone hole effect on SLP
- (ii) T response to Pinatubo
- (iii) Solar cycle effects on ozone
- (iv) 20th century T trends
- (v) Etc...

