"*Local and remote climate effects of regional pollutant emissions*"

by Apostolos Voulgarakis, Imperial College London

CCMI Meeting, Frascati, Rome, 6th of October 2015

With: *Matt Kasoar (Imperial), Dill Shawki (Imperial), Laura Mansfield (Imperial), Drew Shindell (Duke), Greg Faluvegi (Columbia/NASA GISS), Jean-Francois Lamarque (NCAR), Nicolas Bellouin (Reading), Kostas Tsigaridis (Columbia/NASA GISS), Bill Collins (Reading) (+thanks to the Met Office for computing)*

Imperial College London

Processes involved

• A combination of model diagnostics (chemistry, radiation, thermodynamics, dynamics) and sensitivity experiments can facilitate breaking down the *emission-concentration-forcing- response chain* into its individual parts. Regional emission reduction simulations with

HADGEM3-AO

Kasoar, Voulgarakis et al. *(in prep. 1)*

1.875°x1.25° resolution, 85 levels up to 85km 1° NEMO ocean (75 depth levels) and CICE sea-ice CLASSIC aerosol scheme

200 year simulations, repeating year 2000 emissions **Remove** emission of interest from individual regions

Regions where emissions are perturbed

Change in total precipitation (mm/day)

Dynamical changes (geopotential height anomalies) in above SO₂ cases

 Similarity in pattern of responses corresponds to similar dynamical structure.

Such simulations can be valuable for creating regional emission metrics

Green: BC, Red: Sulphate, Grey: Uncertainty.

HadGEM3 1.875° x 1.25°; 85 vertical levels

CESM1 2.5° x 1.875°; 30 vertical levels

GISS-E2 2.5° x 2°; 40 vertical levels

Investigating China $SO₂$ removal with

3X AS MANY MODELS

Kasoar, Voulgarakis et al*. (in prep. 2)*

Differences between HadGEM3 and GISS-E2

Global SO₂ dry deposition:

- HadGEM3 = **406.2** kg(S)/s
- GISS-E2 = **1399** kg(S)/s

Global $SO₂$ dry oxidation:

- HadGEM3 = **609.3** kg(S)/s
- GISS-E2 = 681.9 kg(S)/s

Global $SO₂$ wet processing:

 \odot

- HadGEM3 = **1419** kg(S)/s
- GISS-E2 = **742.5** kg(S)/s

- Present-day BC effects are small compared to $SO₂$.
- Strong hemisphere-wide response to localised midlatitude forcing. International agreements needed.
- Large model diversity in sensitivity to $SO₂$ emission reductions, mainly due to aerosol processing.

Conclusions Future Work

- **Perform more simulations** (e.g. Europe, tropics, ozone precursors, organic carbon).
- \blacksquare Further investigate the processes (& connection to modes of variability).
- Include more models; dedicated intercomparison? -> Links with PDRMIP & beyond.

THANK YOU!!

Systematic studies on source-receptor relationships

- Typically pollution-oriented.
- Occasionally look at radiative forcing, but not at climate responses.

One study systematically examined regional forcing-response relationships

 0.4 -0

 $1.6\,$

 1.2 0.8 0.4 04 28°

Response
 $(^{\circ}C (W m^{-2})^{-1})$

 28° S-90 $^{\circ}$ S

28° S-90° S SAT

 28°

28° N-60° N

-60° N

Forcing location

Forcing location

 28° S- 28° N

60° N-90° N

 60° N-90

regional temperature responds to forcings in different latitude zones (tropics, northern midlatitudes etc).

Shindell and Faluvegi, *Nature Geosci.* (2009)

Also see: Voulgarakis & Shindell *J. Climate* (2010); Shindell, Voulgarakis et al., *ACP* (2012)

Very few studies actually separated remote effects on climate

- Have only focused on particular regions/species; did not systematically examine different effects, or thoroughly explored the mechanisms.
- E.g. above study found that East Asian carbonaceous aerosol emissions can have drastic effects on US temperature.

Why those regions?

Why those regions (2)?

Removing SO₂ emissions from East Asia

Temperature and Precipitation response (JJA)

Temperature **Precipitation**

• Similar changes though weaker, even in Asia, indicating non-local influences).

Removing SO₂ emissions from NH mid-latitudes
Moisture flux over South Asia (IIA) <u>Removement Society of Social Removement</u> Moisture flux over South Asia (JJA)

• A strengthening of the monsoon circulation leads to more moisture flowing into South Asia.

Removing SO₂ emissions from NH mid-latitudes
200bPa wind change (114) $\frac{1}{\sqrt{2}}$ emissions from $\frac{1}{\sqrt{2}}$ 200hPa wind change (JJA)

JJA anomalous wind at 200hPa

NISSIONS Trom NH MId-latitudes
Ponal mean temperature change (IIA Removing SO2 emissions from NH mid-latitudes **Removing SO₂ emissions from NH mid-latitudes** Zonal mean temperature change (JJA)

- Heating stronger in northern mid-latitudes and tropical upper troposphere.
- Temperature gradients become weaker in the NH and stronger in the SH.

• This may explain the jet speed changes.

10x carbonaceous aerosol emissions from Asia Temperature response (JJA)

• Similar effects (qualitatively) in all runs.

Slow and fast precipitation response

(June-July-August)

• For precipitation, the bulk of the effect is modulated by the ocean (slow).

Removing SO₂ emissions from NH mid-latitudes
Precipitation response Removing SO2 emissions from NH mid-latitudes Precipitation response

Dec-Jan-Feb Jun-Jul-Aug

- Drastic changes in precipitation, especially in the tropics.
- ITCZ shifts northward, due to changes in interhemispheric heating. Large increases in Sahel and South Asian precipitation.

BC vs. SO₂ (no NML)

US vs. China SO₂

India vs. China SO₂

US vs. EA SO₂

 -0.2

Change in surface temperature (K)

 0.6

n's

 0.4

 0.2

 -0.4

 -0.2

Change in surface temperature (K)

 0.2

 0.4

 0.6

 0.8

 -0.4

 -0.6

 -0.8

India vs. EA SO₂

CESM1 average AOD in visible band, masked to AERONET (500nm) locations

HadGEM3 average AOD at 550nm, masked to AERONET (500nm) locations

GISS-E2 average AOD at 550nm (band 6), masked to AERONET (500nm) locations

PDRMIP

Precipitation Driver Response Model Intercomparison Project

PDRMIP Precipitation Driver Response Model Intercomparison Project

PDRMIP

Precipitation Driver Response Model Intercomparison Project

PDRMIP Precipitation Driver Response Model Intercomparison Project

PDC – Present day concentration PIC – Pre-industrial concentration

Work for PDRMIP $(SxSO_A$ shown here)

- ITCZ shifts not occurring in this case (top).
- That is counterintuitive, as the largest aerosol changes are in the northern hemisphere (mid).
- However, large-amplitude cloud changes occur also in the
SH (bottom) -> smaller interhemispheric energy imbalance as a result.
- Possibly in NH the AIE is saturated?

XKCXB - XKCXA: ANNUAL MEAN TOTAL PRECIPITATION RATE

Data Min = - 0.1294, Max = 0.39098, Mean = 0.05