

Towards a coordinated modeling assessment of the climate response to stratospheric aerosol

Claudia Timmreck¹, Davide Zanchettin², Myriam Khodri³, Graham Mann⁴

:1 Max-Planck-Institute for Meteorology, Hamburg, Germaamy,2: University of Venice, Italy,, 3: IRD/IPSL/Laboratoire d'Océanographie et du Climat, France, 4: School of Earth and Environment, University of Leeds, UK,

AERCHEMIP, Italy

Max-Planck-Institut Meteorologie

The IPCC-AR5 report states (WG1, Ch. 8):

"Volcanic eruptions […] are the dominant natural cause of externally forced climate change on the annual and multi-decadal time scales […]"

"The RF [radiative forcing] of volcanic aerosols is well understood"

Table 8.5 from Myhre et al., 2013 | **Confidence levels for the forcing estimates**

"The volcanic RF has a **very irregular temporal pattern** and for certain years has a strongly negative RF"

"Although the effects of volcanic eruptions on climate are largest in the 2 years following a large stratospheric injection […] there is **new work indicating extended volcanic impacts** via long-term memory in the ocean heat content and sea level […]"

Figure 8.18 from Myhre et al., 2013 | **Time evolution for anthropogenic and natural forcing mechanisms**

Volcanoes and the climate: uncertainties /1

Effect of Volcanic Eruptions on Overlapping 10-Year TLT Trends

Figure 4 from Santer et al. 2014 Behavior of overlapping 10-year trends in the 'ENSO removed' nearglobal (82.5 N–70 S) TLT data. Least-squares linear trends were calculated over 120 months ,.

The largest uncertainties in the estimates of radiative forcing from historical climate simulations occur during periods of strong volcanic activity [*e.g.Santer et al., 2014***]**

Uncertainties of the emission strength , global aerosol simulations suggest an aerosol load much smaller than known from satellite observations -> see posters by Graham Mann et al. and Lindsay Lee et. al

Volcanoes and the climate: uncertainties /2

Figure 4 from Driscoll et al., 2012 | **Comparison between reanalyses and CMIP5 multi-model mean. Composite anomalies averaged after 2 postvolcanic winters for near-surface temperatures (a,b) and sea-level pressure (c,d)**

"The **models generally fail to capture the NH dynamical response following eruptions**. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eur-asian warming pattern, and they tend to overestimate the cooling in the tropical troposphere." [*Driscoll et al., 2012*]

"The **strength of this overturning increase varies considerably from model to model** and is correlated with the background variability of overturning in each model. Any cause/effect relationship between eruptions and the phase of El Niño is **weak**." [*Ding et al., 2014*]

→ non robust simulated dynamical responses to volcanic eruptions

Volcanoes and the climate: uncertainties /3

" **Uncertainties grow considerably for events that occurred in the more remote past** […] which contribute substantially to our understanding." [*Zanchettin et al., 2015*]

Figure 1 from Zanchettin et al., 2015 | **Uncertainty in radiative forcing and climate response for the early-19th-century eruptions. Different models and forcing inputs (c) and internal climate variability (d) similarly contribute to simulation-ensemble spread**

Tackling the uncertainties: a modeling approach

SSiRC aims at better understanding and hence modelling of the stratospheric aerosol layers and its controls, particularly precursor gaseous sulfur species that are a direct input of major volcanic eruptions.

Components of SSIRC

- Understanding aerosol measurements
	- Making data accessible
	- Preserving historical data sets
	- Improving the aerosol climatology for 1850 to 2015
	- Planning a community response to the next big eruption
- Understanding how stratospheric aerosols impacts climate
	- The role of small eruptions in modulating stratospheric aerosol levels and climate change
	- Understanding cataclysmic eruptions impact on climate
- Facilitating the development of an interactive sulfur-aerosol model for climate models

http://www.sparc-ssirc.org/

SSiRC aerosol model intercomparisons

with interactive stratospheric aerosol modules

(co-chairs: *Claudia Timmreck, Graham Mann*)

Coordinated experiments to intercompare simulated stratospheric aerosol properties, assess volcanic $SO₂$ emissions & quantify uncertainty in predicted volcanic forcings:

2 nd Workshop on Stratospheric Sulfur and its Role in Climate Potsdam, Germany, 25-28 April 2016

VolMIP – Model Intercomparison Project on the climatic response to Volcanic forcing

in a nutshell:

VolMIP is a CMIP-endorsed activity (co-chairs: *Davide Zanchettin, Claudia Timmreck, Myriam Khodri*) which defines a common protocol focused on **multimodel assessment of climate models' performance under strong volcanic forcing conditions**.

VolMIP defines a set of *idealized* volcanic perturbations based on historical eruptions

Volcanic forcing is implemented through prescribed aerosols optical parameters **derived from radiation parameters of documented eruptions**.

The experiments are designed as ensemble simulations, with sets of **initial climate states sampled from an unperturbed preindustrial simulation (piControl)**.

Several models have already committed to perform VolMIP core experiments, including CanESM, CESM, EC-Earth, FGOALS, GISS, IPSL, MIROC-ESM, MPI-ESM, MRI-ESM1.x, NorESM and UKESM.

http://www.volmip.org/

VolMIP experiments are designed based on a twofold strategy

Identification of consensus forcing input data for both types of experiments is an integral part of VolMIP

VolMIP core (Tier 1) experiments

Well-defined volcanic forcing for VolLSHORT (Pinatubo)

Pinatubo forcing data from the improved CMIP/CCMI long-term stratospheric aerosol database Larry Thomason et al. in prep for CMIP6

Pinatubo

- SAGE II profiles terminated as high as 25 km in the immediate aftermath of the eruption
- Development a methodology for using $\frac{25}{9}$ and Development a methodology for using $\frac{25}{9}$ IR measurements by CLAES to fill
- Generally increases low latitude optical depth
- High latitudes
	- Past 'gap-free' aerosol climatologies used unrealistic extrapolations/ interpolations to fill the winter high latitudes
	- A new method using equivalent latitudes and Equivalent latitude pdfs as a function of latitude has been implemented to provide a superior high latitude analysis

1020 nm Extinction (log₁₀ 1/km); Date: 1992/ 4 30 Ω -50 50 Latitude 1020 nm, Time: 4/1992 30 Altitude (km)
20

 $\mathbf 0$

Latitude

50

 -50

CMIP₅ Analysis for April 1992 Filled using subtropical lidar data

CMIP 6 Analysis for April 1992 Filled using tropical CLAES data (note change in contour levels and coloring)

Well-defined volcanic forcing for VolLongS60EQ

Coordinated assessment of radiative forcing uncertainties for VolLongS60EQ using aerosol climate models (activity leader: *Myriam Khodri, IPSL*)

 Global aerosol model outputs deliverable: Deadline October 2015

Participants: **UM-UKCA**, **ECHAM5-HAM**, **UPMC-2D WACCM-CARMA**, **AER-2-D**, **GISS ModelE2**

- AEROCOM:
	- Contributions in SSIRC experiments
	- e.g. UTLS proposal by Mian Chin
- CCMI:
	- Sensitivity experiments of chemistry climate with VolMIP Forcing
- AERCHEMIP
	- Comparison of volcanically perturbed periods
		- Pinatubo, El Chichon etc
		- early 21st century

Potential linkages /2

To be continued

