

The climate impact of past changes in **halocarbons and CO₂ in the tropical UTLS region**

Ted Shepherd Department of Meteorology University of Reading

Based on paper by McLandress, Shepherd, Reader, Plummer & Shine (2014, J. Clim.)

• Halocarbons represent a very significant fraction of the GHG radiative forcing, especially over the 1970-2000 period

Chapter 1 of IPCC/TEAP Special Report on Ozone and Climate (2005)

• The future radiative forcing from HFCs could well exceed that of the ODS halocarbons at their max

From Assessment for Decision-Makers of 2014 WMO/UNEP Ozone Assessment

• The standard approach in the stratospheric CCM community (and Ozone Assessment) to attribution of ozone changes is to distinguish between ODS (chemical) and GHG (radiative) effects

 $-$ Not quite logical, since (most) halocarbons affect both!

GHG-induced mid-latitude increase and tropical decrease result from strengthened Brewer-Dobson circulation

Plummer et al. (2010 ACP)

Halocarbons are expected to preferentially warm the tropical upper troposphere/lower stratosphere (UTLS), so could have quite a distinct effect on tropical upwelling and tropical ozone

And also, of course, on stratospheric water vapour!

The effect of halocarbons on climate has not previously been quantified in a coupled setting with a chemistryclimate model

FDH calculations by Forster & Joshi (2005 Clim. Change)

- The CMAM response over 1960-2010 to *radiative* changes in halocarbons does not show the expected warming in the tropical lower stratosphere
	- $-$ Suggests important feedbacks
- There seems to be more leverage on the tropical cold-point tropopause (dotted line) than from $CO₂$

- Over 1960-2010, CFCs had a comparable effect on many aspects of stratospheric climate to that of $CO₂$ (vs 40% for surface and upper tropospheric warming)
	- $-$ Has important implications for past vs future

- The strengthened tropical upwelling decreases ozone in the tropical lower stratosphere
- However in the case of $CO₂$ (but not halocarbons), upper stratospheric cooling increases ozone in that region

- Thus, $CO₂$ increases lead to *more* tropical column ozone, while halocarbon increases lead to *less*
	- $-$ Similar for other WMGHG
	- Future tropical column ozone depends on the mix of GHG in the scenario

- Together, the cooling from lower stratospheric water vapour increases and from ozone decreases more than offsets the warming from halocarbons (figures show instantaneous heating rates)
- Water vapour and ozone feedbacks are similarly important in the response to $CO₂$ (right)

These negative feedbacks may help explain the lack so far of an observed increase in lower stratospheric water vapour

Hegglin et al. (2014 Nature Geosci.)

Conclusions

Halocarbons exert a stronger influence on the tropical tropopause region than on surface climate, relative to other GHG

– Comparable to that of $CO₂$ over the 1960-2010 period

• Feedbacks from water vapour and ozone are significant, and nullify the expected stratospheric warming from halocarbons

 $-$ These feedbacks also very important for the response to CO₂

- Strengthened tropical upwelling (Brewer-Dobson circulation) reduces tropical lower stratospheric ozone (as observed), which preferentially cools the tropical cold-point tropopause
	- $-$ May help explain the lack so far of any water vapour increase in the observations; also reduces stratospheric H_2O feedback
- Stratospheric column ozone is increased by increased $CO₂$, but decreased by increased halocarbons (or other WMGHG)
	- $-$ Future of tropical column ozone depends on GHG scenario