

MERRA-2: Aerosol Reanalysis 1980 - Onward

Cynthia A. Randles

With thanks and contributions from:

Arlindo da Silva, Virginie Buchard, Anton Darmenov, Peter R. Colarco, Valentina Aquila, Huisheng Bian, Ed Nowottnick, Xiaohua Pan, Alexander Smirnov, Hongbin Yu, and R. Govindaraju

AeroCom/AerChemMIP/CCMI, October 7, 2015

Why make a reanalysis?

- A consistent reprocessing of Earth system observations using a modern, unchanging data assimilation system
- Relies on models to interpret, relate and combine many different observations from multiple sources
- Produces multi-decadal gridded data sets that estimate a large variety of Earth system variables, including ones that are not directly observed
- Has become fundamental to research and education in the Earth Sciences

A successful reanalysis **requires** a good forecast combined with bias-corrected/quality controlled observations!

MERRA-2 Advances

Building on the successes of MERRA by updating the GEOS-5 model, analysis code, and observing system:

- \diamond Include modern satellite observation types not available to MERRA
- \diamond Reduce spurious trends and jumps related to changes in the observing system
- $\diamond\,$ Reduce biases and imbalances in the water cycle

Steps towards a full Earth System Reanalysis:

- Improved representation of cryospheric processes
 Improved representation of the stratosphere, including ozone
- ✓ For the first time, a <u>coupled</u> aerosol-meteorological reanalysis for the entire satellite era (1980 – onward)

MERRA-2: Improved representation of ozone

MERRA-2 shows close agreement with ozone sonde observations throughout, but especially when Aura MLS data are assimilated

GEOS-5: The MERRA-2 Modeling System

MERRA-2: Global AOD Observing System

Sensor	Time Period	Description
AVHRR*	1979 – 2002	PATMOS-x; NNR; Ocean Only
AERONET	1999 – Onward	Ground-based stations
MODIS Terra*	2000 – Onward**	C5; NNR; Separate land & ocean
MODIS Aqua*	2002 – Onward**	C5; NNR; Separate land & ocean
MISR	2000 – Onward	Bright surfaces (albedo > 0.15)

Total Global Monthly Number of AOD Observations (× 10⁷) by Sensor

NNR: QC AOD retrievals from observed reflectance using neural net trained on AERONET
 ** Available in near real time (NRT)

Aerosol Assimilation: Forecast and Updates/Increments

The Aerosol Analysis (every 3 hours) takes 2 steps:

- 1 <u>2D AOD Analysis</u>: Observable AOD is two-dimensional and constrains the *total column optics* of aerosol, <u>NOT</u> the aerosol speciation or vertical distribution.
- 2 <u>Relate analysis increments to 3D aerosol concentrations</u>: GOCART simulates aerosol <u>mass</u>, so AOD analysis increment must be translated from an optical quantity to mass using the relative speciation, vertical distribution, parameterizations *etc.* from the model.

Aerosol Analysis: Global Mean AOD 1980 - Onward

- Unique amongst its peers, the MERRA-2 reanalysis now includes an aerosol reanalysis for the modern satellite era (1980 onward).
- Aerosols are <u>coupled</u> to the meteorological reanalysis (both radiatively and through emissions/loss processes).
- Constrained by observed aerosol optical depth (AOD), MERRA-2 simulates major aerosol events (i.e. volcanic eruptions) as well as the temporal and spatial variability of major aerosol species.

Aerosol Analysis Performance

- The MERRA-2 aerosol analysis performance can be evaluated by examining the differences between the observations and model forecast (O - F) and between the observations and the AOD analysis (O - A).
- Prior to assimilating AOD, co-locating the model and each sensor, the forecast generally underestimates observed AOD; after the assimilation the model bias is reduced.
- For each sensor, Taylor diagrams show improved performance of analysis compared to forecast (standard deviation, correlation, root mean square error).

Aerosol Analysis: Independent Verification

Aerosol Analysis Application: Climate Studies

-0.02

-0.04 -0.06

-0.08 -0.10

Aerosol Analysis Application: Air Quality (Surface PM2.5)

Good overall agreement with surface PM2.5 Observational Networks in United States

Aerosol Analysis Application: Events (Pinatubo Eruption)

- First aerosol assimilation to include major historic volcanic events like El Chichón (1982) and Pinatubo (June, 1991).
- Movie shows the co-evolution of gaseous SO₂ emissions from Pinatubo (left) and formation of the the sulfate aerosol plume (right) as SO₂ is converted into particles.
- SO₂ (g) is from emissions inventories and unconstrained by assimilation. Sulfate aerosol AOD (right), however, is impacted by the assimilation of total aerosol AOD.

MERRA-2 Production Status

Completed 1980 – present, now running as a continuing climate analysis with 2 – 3 week latency

Office-wide evaluation of MERRA-2 has been completed, with Tech Memos and refereed publications *in preparation*

File specification: http://gmao.gsfc.nasa.gov/pubs/office_notes/

Data released via the NASA Goddard Earth Sciences (GES) Data Information Services Center (DISC)

- 1-hourly surface and 2D fields
- 3-hourly and 6-hourly 3D fields
- **Daily Products ~25 GB/day** (9.1 TB/yr)
- Monthly Products ~34 GB/mo (408 GB/yr)