Impact of new parameterizations on aerosol microphysics and cloud forcing in ECHAM5-HAM

Kai Zhang¹, Johann Feichter¹, Philip Stier², Jan Kazil³, Declan OʻDonnell¹, Ulrike Lohmann⁴, Sylvaine Ferrachat⁴, Stefan Kinne¹, Johannes Quass¹

> 1. MPI-Met, Hamburg 2. Univ. of Oxford

3. NOAA, Boulder

4. ETH, Zürich

Outline

- 1. Introduction
- 2. New features in ECHAM5-HAM
- 3. Change of aerosol properties
- 4. Effect of aerosols on clouds & feedback of clouds on aerosols
- 5. Summary

The ECHAM5-HAM Model (Original)

Meteorology: Roeckner et al., 2005 Spectral model with modified ECMWF physics: Advection: FFSL (Lin & Rood, 1996) Convection: Tiedke, 1989 & Nordeng (1994) Prognostic cloud cover (Tompkins, 2001) Aerosol: Stier et al. 2005M7 microphysics (Vignati et al. 2004) , modal approach aerosol mass and number predicted, mode width prescribed Sulfate, BC, POM, dust, sea salt External or internal mixing

Cloud microphysics: Lohmann and Roeckner, 1996 Mass of cloud liquid and cloud ice predicted Cloud droplet number conc. *prescribed*

Problems in the previous model

Max-Planck-Institut für Meteorologie

New features

1. Nucleation scheme which considers the charged nucleation induced by cosmic ray (J. Kazil)

- 2. New below-cloud scavenging scheme (B. Croft)
- 3. ĸ-Köhler theory based water-uptake scheme (D. O'Donnell)
- 4. New explicit treatment of SOA (D. O'Donnell)

5. Two-moment cloud microphysics, CDNC predicted, allow modeling the interaction between aerosol and cloud in a more consistent way (U. Lohmann, S. Ferrachat)

Question:

How will these changes affect aerosol size, number? How does the changed aerosol microphysics interact with cloud? Can these changes give better prediction of AOD and size of aeosols?

7 lognormal modes – M7 module

Simulations

- T63L31 resolution $(\sim1.9^{\circ}$ x1.9 $^{\circ})$
- Nudged with year-2000 ERA40 re-analysis data
- Two types of experiments:
	- Group A: standard cloud scheme, CDNC prescribed
	- Group B: two-moment cloud scheme, CDNC predicted

Group A (aerosol microphysics, optical properties) Group B (cloud forcing)

Stier et al. (2005) \rightarrow nucleation \rightarrow below-cloud scavenging \rightarrow K- Köhler water-uptake \rightarrow SOA \rightarrow two-moment cloud scheme | new model

new model \rightarrow old nucleation $\overline{}$ new model \rightarrow old water-uptake scheme

Effect of new nucleation scheme

number concentration of soluble nucl. mode particles (r<5nm, N cm-3 STP)

Difference in the simulated AOD (K-V) Difference in the simulated SWCF (V-K)

SWCF: Net shortwave flux at TOA: total sky – clear sky

Kappa-Köhler theory based water-uptake scheme

Original: ZSR based scheme

- take aerosol as a solution of mixed electrolytes
- extremely sensitive to higher RH

Jacobson et al. JGR-1996

New: Kappa-Köhler theory based scheme

- can easily be applied for non-electrolytes (e.g. organic specie)
- a hygroscopicity parameter ^κ for each chemical component

Petters and Kreidenweis ACP-2007

Growth factor of an aerosol particle can be expressed as a function of temperature, relative humidity, aerosol dry diameter and kappa

Implemented by D. O'Donnell

Effect of new water-uptake scheme

Surf. aerosol water in the soluble acc. mode particles (50<r<500nm, kg kg-1) \rightarrow Less acc. aerosol water

Zonal mean number concentration of soluble acc. mode particles (50<r<500nm, N cm^3 STP) \rightarrow Less acc. particles, more smaller particles (nul. Ait.)

Effect of new water-uptake scheme (II)

Sensitivity of global AOD to ^ĸ

Cloud microphysics

Two-moment cloud microphysics:

Lohmann et al. (2007), Lohmann (2008)

Activation: Lin & Leaitch, 1997

$$
Q_{\text{nucl}} = \max \left[\frac{1}{\Delta t} \left(0.1 \left(\frac{N_a w}{w + \alpha N_a} \right)^{1.27} - N_{l, \text{old}} \right), 0 \right]
$$

Auto-conversion: Khairoutdinov & Kogan, 2000

$$
Q_{\text{aut}} = 1350 \times q_l^{2.47} N_l^{-1.79}
$$

Processes that not considered in current simulations:

1. Cloud processing of aerosols

currently smaller particles in cloud droplets can be "re-evaporated" again 2. Microphysics of convective cloud

… …

Effect of prognostic CDNC calculation on cloud and water vapor

Shortwave cloud forcing

Net shortwave flux at TOA: total sky – clear sky

Max-Planck-Institut für Meteorologie

Longwave cloud forcing

Net longwave flux at TOA: total sky – clear sky

Max-Planck-Institut für Meteorologie

Feedbacks of clouds on aerosolsin prognostic CDNC calculation

Number conc. of soluble acc. mode particles (50<r_p<500nm, N cm-3 STP) More aerosol particles in the upper troposphere Less aerosol particles over tropical forest below 700 hPa

Aerosol optical depth (AOD)

A: ECHAM5-HAM-rev42

C: AERONET-2000 composite D: satellite composite E: AEROCOM median

 $1.0E + 00$

5.6E-01

3.2E-01

1.8E-01

1.0E-01

5.6E-02

3.2E-02

1.8E-02

1.0E-02

120E

180

60E

B: ECHAM5-HAM-CDNC

B - A

180

90N

60N

30N

30S

60S

90S

0

120W 60W

Angstroem parameter

A: ECHAM5-HAM-rev42

B: ECHAM5-HAM-CDNC

B - A

C: AERONET composite

Summary

- 1. Modification in the parameterizations in the model leads to significant changes of aerosol properties. In terms of AOD and aerosol size distribution, new model version performs better.
- 2. Aerosol-cloud-climate interaction has been considered in a more consistent way. The CDNC version predicts more cloud and higher RH in the free troposphere than standard ECHAM5.
- 3. New nucleation scheme enhances SW cloud forcing, while the new water-uptake scheme
- 4. Due to the slower auto-conversion process, prognostic CDNC calculation increases the lifetime of aerosol. For example, sulfate lifetime increases by about 1 day.

kai.zhang@zmaw.de

ECHAM5-HAM AEROCOM AEROCOM-A2 simulation A2 simulation

Experiment expected ready-time A2-CTRL 31.10.2009 A2-SIZ1 30.11.2009 A2-SIZ2 30.11.2009 A2-SIZ3 30.11.2009 SIZ3 30.11.2009A2-SIZ4 30.11.2009

Hindcast simulations (and others?) will be taken over by Univ. Oxford (Stier)

New below-cloud scavenging scheme

Collection of aerosol particles by rain drops look-up table: 60 aerosol radii and 10 rainfall rates

Effect of new wet scavenging scheme

10% smaller global average AOD

ANN

Max-Planck-Institut für Meteorologie

Vertical profile of fine mode particles

Comparison between the simulated and observed Aitken and accumulation mode number concentrations over Europe.

accumulation mode (0.1–3 µm) Aitken mode (0.014–0.1 µm)

The simulated profiles are July and August averages. Observations were compiled by Minikin et al. (2003) using the measurements obtained in July and August 2000 during the UFA/EXPORT campaign. The boundaries of the shaded areas indicate the 10and 90-percentiles of the observational data

Max-Planck-Institut für Meteorologie

Outline • Introduction • New features • **Evaluation** • Future work

(Dp>3nm) Vertical profile of ultra-fine particles

Data from Clarke and Kapustin (2002)

Max-Planck-Institut für Meteorologie

Outline • Introduction • New features • **Evaluation** • Future work

Aerosol size distributionin the offshore regions of polluted area

Kappa-Köhler theory based water-uptake scheme

$$
\frac{gf^{3}-1}{gf^{3}-1-\kappa} = RH \exp\left[-\frac{4\sigma_{s/a}M_{w}}{RT\rho_{w}}/D_{d}gf\right]
$$

This is solved offline for *gf* using *T, RH, κ* and *D_d* of atmospheric relevance and the results stored in a lookup table. In runtime, we first calculate the dry diameter D_{d} and the *κ* value for each soluble mode, then simply look up the growth factor to get the wet diameter

Activation of particles

Cloud droplet nucleation Lin & Leaitch, 1997

$$
Q_{\text{nucl}} = \max \left[\frac{1}{\Delta t} \left(0.1 \left(\frac{N_a w}{w + \alpha N_a} \right)^{1.27} - N_{l, \text{old}} \right), 0 \right]
$$

Updraft velocity Lohmann et al. 2007

$$
w = \left\{ \frac{\overline{w} + 1.33\sqrt{\text{TKE}}}{\overline{w} + \sqrt{\text{CAPE}} + 1.33\sqrt{\text{TKE}} \text{ convective clouds} } \right\}
$$

Activation of particles (2)

 N_a = number concentration of aerosol particles with wet radii > 0.035 μm

 N_l _{old} = the cloud droplet number concentration from the previous time step

 α = 0.023 cm⁴ s⁻¹ from observation

Aerosol size dominates aerosol activation in the first instance (Dusek et al. 2006)

Cloud Microphysics – Two-Moment Scheme

Predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals

Heterogeneous freezing in large-scale mixed-phase clouds: immersion freezing and contact freezing by dust and soot aerosols

Homogeneous freezing in cirrus clouds

Lohmann et al., 2007

Outline • Introduction • **New features** • Evaluation • Future work

Autoconversion rate

Autoconversion rate Q_{aut} (kg kg⁻¹s⁻¹) (Khairoutdinov & Kogan, 2000)

$$
Q_{\text{aut}} = 1350 \times q_l^{2.47} N_l^{-1.79}
$$

The autoconversion rate is a key process for the formation of precipitation in warm clouds and therefore is important for the cloud lifetime effect of aerosols

Vehkamaeki et al.

Kazil et al.

As temperature goes down, neutral H2SO4/H2O nucleation becomes increasingly efficient, and at temperatures below about 230 K it is the dominant aerosol nucleation process (stronger than charged nucleation of H2SO4/H2O and of H2SO4 and organics). Once neutral nucleation takes over, the slope of the increase is controlled by the dG for the H2SO4(H2O)x + H2SO4(H2O)x process. In the new nucleation scheme, the dG comes from lab measurements; in the old nucleation scheme it derives from the classical liquid drop model plus some modifications.

ür Meteorologie