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Figure 1a: Schematic Representation of Different Clouds in the GCM | (Sud and Walker, 1992)
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Presentation Notes
Three basic cloud types: convective, Boundary layer, large scale

Microphysics is done level by level: incoming mass, entrained mass and outgoing mass, falling precipitation and uplifting clouds and small water drops;

Detrainment into cloud anvils that allow small rain drops to accrete and produce steady rain with evaporation and downdrafts from level of free fall or maximum equivalent potential temperature.

BL clouds are similar to convective, except that they start as dry convection due to PBL fluxes and become moist when the BL plume gets supersaturated.

Large scale clouds form due to rising motion when warm air glides over the cold due to large scale motion fields, produces supersaturation and rain. The basic difference between our and classic parameterizations is that in this rate of cloud and precipitation production is determined from rate of supersaturation production., while overall cloudiness is limited by cloud fraction supersaturation relation such as Slingo and Ritter.

New clouds merge into the existing by random superposition.
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Presentation Notes
Four module; all based on first principle. Liquid cloud activation, ice cloud activation, precipitation microphysics for GCM drawn from Seifert and Behang, and estimating cloud optical thickness.
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Schematic; from aerosols to activation to diffussional growth to accretion and precipitation; it is well understood from water clouds.


Gi1bbs Function

The Gibbs function increase enables a

minute drop (10-3 um radius range) to grow
to its critical radius at an S-value that can

be computed from the maxima of:

AG = 4nr’cy —4/3nr’piR, In ¢ (1)
Cs

At saturation, the water drop never reaches
its critical size and therefore never forms;
While at S »> 1.0, the critical sizes can be
reached even for very small radii. On the
other hand, if hydrophylic aerosols in 1.0 um
size-range are around, the critical size is

reached at S<<1.03 .

Our atmosphere has abundance of aerosols;
it rarely reaches S > 1.05. This situation is
well represented by Kohler(1936) Theory.

AG (x10™) Joules

AG vs r for several values of S (1=273)
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It is not necessary. But if they give you time, go ahead and say: first principles of condensation on a nucleous show that a condensing particle grows precipitously to eliminate the in-cloud supersaturation at a critical radius which in aerosol lingo is called activation and is much smaller than the kind of supersaturations one needs if condensation were in prestine environment on clusters of molecules in the nano range.
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How: 

Fundamental relation of the dependence of activation based on the nucleating particle dating back to Kelvin

Influence of chemicals including ionization after disolving and providing more nuclei through Van’t hoff term on the water drop vapor pressure

Well understood processes; its all text book material at this time.




3. Nenes and Seinfeld, 2003

4.1. Computation of Parcel Maximum Supersaturation

[18] In an adiabatic parcel the rate of change of the
supersaturation, s, for a cloud parcel that ascends with a
constant vertical velocity, V, 1s | Pruppacher and Klett, 1997
Seinfeld and Pandis, 1998]

Supersaturation

ds dW
ol oy (9)

dr i -~
Water Deposition

where Vertical velocity

&M, AH, gM, -~ pM, M, A HE

- (10)

“TTORTZ RT T pM, ,RTZ

and where AH,, 1s the latent heat of condensation of water, T’
1s the parcel temperature, M, 1s the molecular weight of
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Key question boils down to determining the maximum supersaturation so that we know how many aerosols are activated. 

We use Nenes methodology for liquid cloud to estimate Smax;

It tantamounts to ds/dt=0 in equation 9 ; one has to read Nenes and Seinfeld (2003) for the methodolgy 


= Heterogeneous nucleation mechanisms

* Deposition nucleation (deposition nuclei)

® @
Ho <t — @ - @
* Freezing nucleation

contact @ (@) - @ —@
immersion ‘ :.
condensation | > ‘ > .

/freezing

From Xiaohong Liu —implemented the NCAR/GSFC

Available at www.ccsm.ucar.edu/working groups/ Atmosphere/Presentations/20040309/24.ppt
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Describe Ice nucleation processes; 

Of the four only one is  applicable to the homogenoeous range; the others apply to the heterogeneous range.

The model draws from Liu and Penners work (2005) that is again based on first principles

http://www.ccsm.ucar.edu/working

Seifert and Beheng (2001, 2005)

Autoconversion:

cloud liquid water (gm/cm3) 9.44x10° width factor of cloud drop size distribution
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Precipitation formation follows Seifert and Behang (2001)

It invokes auto, accretion, self collection; affets cloud particle numbers produces precip.


k GCM parameterization

Vertlcal Velocity (m/s)
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Sud and Lee (2007) modified the equations for a GCM

Derivations are straight forward. The relations are similar for accretion by falling rain and newly generated auto conversion.

An assumption is that fall velocity of autoconverted particles depends in Lc; and that a series solution for infinite number of layers can be approximated fairly accurately by an exponential. 
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Various drop size distribution functions and the correzsaponding effective/volume radius

We assume gamma distribution; after all it is a GCM!

The p parameter is estimated from Khorvotsonov and Curry (1999)
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At the end of the day, in fact more like 3 years we get the obove OLR and planetary albedo fields;

Are there problems! Yes Indeed; solving them is my PhD work

Is it good enough for simulations studies; we thought so

Based on the above we performed the following studies.
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With global distribution of aerosols from MIRAGE for water clouds and GOCART for ice clouds, we focused on India and Africa.

Column aerosol optical Thickness and PBL CCN fields that mostly get activated to start liquid clouds are shown; never mind figure numb3ewrs. They come from Papers in which they are used
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If the aerodsol anomalies doubled and halfed are continental scale, we can forget about limited area model constrained by the same boundary forcings. Results are ridiculous because there bounded regionally without global interaction; no wonder limited area models are not used for climate change studies. You will see the differences in the following view graphs. 
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Ha, this is globally interactive GCM; there are six cases and mean differences are shon with regional changes for India and Africa;

The fields precip diffs; air-column moisture convergences and total precipitable water.
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Natural surface and TOA SW radiation changes are constrained by aerosol anomaly region; precipitation and motion fields are not
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The runs were made with ADE only and AEI only and both operating together; for such large changes in evaporation over the Indian ocean, one naturally expects large changes in circulation and surface winds.
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Presentation Notes
For JJA active monsoon periods, indeed there sare; comparing ADE and AIE, clearly AIE impact dominates for changes in the circulation and surface wind fields (shown) but corresponding changes in other fields (not shown) were consistent as well.
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Aerosols affect the radiation and clouds. Ta high levels they affect OLR; but are these really only the aerosols! According to AIE, aerosol contribute to global warming in this scenarion as opposed to mitigating it. This is worth noting and is counter to the popular belif that aerosol wioll help out. This result shows they can hurt


40N 1

30N 1

20N 1

10N 1

EQ1

10S 4

40N 1

30N 1

20N

10N

EQ 1

108 1

40N 1

30N 1

20N

10N

EQ

108

High—level Cloud Fraction difference

Column Cloud Fraction difference

ADE only ADE only
T < A
Region 1 Region 2 Region 1 Region 2
Diff = 0.005 &i Diff = 0.011 Diff = 0.005 Diff = 0.011
L1 oA N A
AIE only AIE only

Region 2
Diff = 0.053

Region' 1
Diff = 0.079

A

Region 1
Diff = 0.087

Region 2
Diff = 0.065

A

ADE & AIE

5

Region 1
Diff = 0.046

Region 2
Diff = 0.031

Region 1
Diff = 0.060

Region 2
Diff = 0.041

45E  60E  75€  9OE  105€ 12

15W

Fig 7b

30w

15W 0 15E  30E 45 G6OE 75 9OE  105€  120F

0.2

0.16

0.12

0.08

0.04

—-0.04

—0.08

-0.12


Presenter
Presentation Notes
Not really, aerosols affected the high cloud so much so that they are the primary contributors to the change in OLR, though the change in TOA SW  are not that much.  
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1.

What do we see? (or CONCLUSIONS)

The existing formulations of aerosol activation for liquid, mixed
phase, and 1ce clouds working with McRAS-AC give reasonable
Aerosol-Cloud-Radiation interaction complex for use in GCMs.

Regional modeling studies, without a two-way feedback inter-
action are unable to provide a worthwhile guidance aerosol-
climate impacts.

Several studies have emphasizes critical importance of the direct
effect of aerosols. We show that AIE can be even more important.
AIE may exacerbate instead of mitigating global warming .

Ice clouds were deficient, and we spent a lot of trying to have a
reasonable clouds in the ITCZ; without enough IN’s to activated
this way impossible ; splintering helps to create IN; but truly
Ammonium Sulfate [(NH4)2S04] is the missing aerosol. It nailed
the 1ce cloud deficiency.
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Just hit Mc-RAS-AC is reasonable and getting better; regional models are not very useful; AIE may be more important than ADE for monsoons; and my work is helping to eliminate ice-cloud deficiency.


Single Column Model simulation: ARM 3 year case
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Liquid water path is reasonable in the ARM 3 year case
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10m Winds & Convergence difference

10m Winds & Convergence difference
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300 hPa Wind difference (m s™)
ADE only

ADE only

700 hPa Wind difference (m s™)
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