Modeling Aerosol-Cloud Interaction in GCMs and Simulation of the ADE & AIE over India and Africa

Y. Sud, E. Wilcox, W. Lau, G.K. Walker, L. Oreopoulos , P. S. Bhattacharjee.

Presented by : Partha S. Bhattacharjee

AEROCOM Meeting, GFDL **7 October, 2009**

Outline

- 1. Cloud Processes in a GCM
- 2. McRAS-Algorithms- its Synergy with AIE
- 3. Synthesis of AIE Modules and Global Budgets
- 4. Simulation Studies over India and Africa
- 5. Key Findings

Parameterisation of Aerosol Indirect Effect

+ McRAS =

Fountoukis and Nenes (2005) Aerosol activation as CCN

Liu and Penner (2005) Aerosol activation as IN

Sud and Lee (2007) Precipitation microphysics

Khvorostyanov and Curry (1999) Cloud particle size distribution

McRAS-AC

From water-vapor**/**aerosol mix to Cloud-water to Raindrops to ice particles: **A Microcosm of the "Big Bang"**

Gibbs Function

The Gibbs function increase enables a minute drop (10⁻³ µm radius range) to grow to its critical radius at an S-value that can

be computed from the maxima of:

$$
\Delta G = 4\pi r^2 \sigma_{\text{lv}} - 4/3\pi r^3 \rho_1 R_v \ln \frac{e_s(r)}{e_s}
$$

At saturation, the water drop never reaches its critical size and therefore never forms; While at $S \gg 1.0$, the critical sizes can be reached even for very small radii. On the other hand, if hydrophylic aerosols in 1.0 μ m size-range are around, the critical size is

reached at **S<<1.03** .

Our atmosphere has abundance of aerosols; it rarely reaches $S > 1.05$. This situation is well represented by Köhler(1936) Theory.

3. Nenes and Seinfeld, 2003

4.1. Computation of Parcel Maximum Supersaturation

[18] In an adiabatic parcel the rate of change of the supersaturation, s, for a cloud parcel that ascends with a constant vertical velocity, V, is [Pruppacher and Klett, 1997;

Seinfeld and Pandis, 1998]

Vertical velocity $rac{ds}{dt} = \alpha V - \gamma \frac{dW}{dt}$,
Water Deposition

Supersaturation

where

$$
\alpha = \frac{gM_w \Delta H_v}{c_p RT^2} - \frac{gM_a}{RT}, \quad \gamma = \frac{pM_a}{p^s M_w} - \frac{M_w \Delta H_v^2}{c_p RT^2} \tag{10}
$$

and where ΔH_{v} is the latent heat of condensation of water, T is the parcel temperature, M_w is the molecular weight of *Heterogeneous nucleation mechanisms*

• Deposition nucleation (deposition nuclei)

From Xiaohong Liu –implemented the NCAR/GSFC

Available at www.ccsm.ucar.edu/working [groups/ Atmosphere/Presentations/20040309/24.ppt](http://www.ccsm.ucar.edu/working)

Seifert and Beheng (2001, 2005)

Autoconversion:

$$
\left. \frac{\partial N_c}{\partial t} \right|_{sc} = -k_c \left. \frac{(\nu+2)}{(\nu+1)} L_c^2 - \frac{\partial N_c}{\partial t} \right|_{au}
$$

GCM parameterization (Sud and Lee, 2007)

eq k

Various DSD-Functionals

Sud et al., Annales Geophysicae , 2009 (accepted)

Fia 3a

Fig 3b

Sfc Net SW difference $(W \ m^{-2})$

TOA Net SW difference (W m⁻²)

Fig 6

Sensible Heat Flux difference $(W \ m^{-2})$ Latent Heat Flux difference $(W \ m^{-2})$

Fig 5

Sfc Net LW difference $(W \, m^{-2})$

TOA Net LW difference $(W \, m^{-2})$

High-level Cloud Fraction difference

Column Cloud Fraction difference

Fig 7b

Sfc Net Radiation difference $(W m^{-2})$ TOA Net Radiation difference $(W m^{-2})$

Fig 8

What do we see? (or **CONCLUSIONS**)

- 1. The existing formulations of aerosol activation for liquid, mixed phase, and ice clouds working with McRAS-AC give reasonable Aerosol-Cloud-Radiation interaction complex for use in GCMs.
- 2. Regional modeling studies, without a two-way feedback interaction are unable to provide a worthwhile guidance aerosolclimate impacts.
- 3. Several studies have emphasizes critical importance of the direct effect of aerosols. We show that AIE can be even more important. AIE may exacerbate instead of mitigating global warming .
- 4. Ice clouds were deficient, and we spent a lot of trying to have a reasonable clouds in the ITCZ; without enough IN's to activated this way impossible ; splintering helps to create IN; but truly Ammonium Sulfate [(NH4)2SO4] is the missing aerosol. It nailed the ice cloud deficiency.

Single Column Model simulation: ARM 3 year case

Liquid water path is reasonable in the ARM 3 year case

