

Sulfate Phase Transition in GEOS-Chem

UNIVERSITY OF

Lincoln

Scot Martin, Harvard; Daniel Jacob, Harvard; Yogesh Sud, GSFC; Partha S. Bhattacharjee,GMU

Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions

Jun Wang,^{1,2} Andrew A. Hoffmann,¹ Rokjin J. Park,^{1,3} Daniel J. Jacob,¹ and Scot T. Martin¹

Received 9 September 2007; revised 14 February 2008; accepted 14 March 2008; published 10 June 2008.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D11207, doi:10.1029/2007JD009368, 2008

Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions

Jun Wang,^{1,2} Daniel J. Jacob,¹ and Scot T. Martin¹

Received 9 September 2007; revised 5 February 2008; accepted 3 March 2008; published 10 June 2008.

FORMATION OF SULFATE PARTICLES

Sulfate particles generally include pure sulfate acid particles (H_2SO_4) and those fully or partially neutralized sulfate particles such as $(NH_4)_2SO_4$, NH_4HSO_4 , $(NH_4)_3HSO_4$.

1

THE HYSTERESIS OF SULFATE PHASE TRANSITION

Aerosol phase transition

Aerosol direct forcing on climate?

To predict the phase transition requires: (a) Current phase (RH back-trajectory) (b) RH in current and next model time step (c) CRH(X) & DRH(X)

SULFATE PHASE, CRH, AND DRH

HYSTERESIS EFFECT IN PREVIOUS CTMS

A full consideration of the hysteresis effect has not been made in the past estimate of sulfate climate forcing.

IMPACT OF SULFATE COMPOSITION ON THE FORCING EFFICIENCY OF SULFATE PARTICLES

╢

At the same RH > 40%, sulfate particle composition can result in 20-30% differences in forcing efficiency (per unit mass burden).

Forcing efficiency = mass extinction efficiency $(m^2/g) \times daytime-averaged$ backscattering fraction. Refractive index and hygroscopic growth from Tang et al (1996); lognormal distribution of dry particles rg=0.07um, sigmag=1.8.

LAB EVIDENCE FOR DEPOSITION NUCLEATION OF ICE ON SOLID AMMONIUM SULFATE

Shilling et al., 2006, Depositional ice nucleation on crystalline organic and inorganic solids, JGR, 2006.

Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation

J. P. D. Abbatt,^{1*} S. Benz,² D. J. Cziczo,³ Z. Kanji,¹ U. Lohmann,³ O. Möhler² 22 SEPTEMBER 2006 VOL 313 SCIENCE

Table 1. Global annual mean shortwave, longwave, and net cloud forcing (difference between all-sky and clear-sky conditions) at the top of the atmosphere; ice water path; and vertically integrated ice crystal number concentration for the different model simulations. HOM: only homogeneous freezing; DU1 and DU10: heterogeneous freezing whenever the dust ice nuclei concentration exceeds 1 cm⁻³ or 0.1 cm⁻³, respectively, and homogeneous freezing otherwise; AS1, AS10, and AS100: same categorization as DU1, but instead of dust, 1, 10, or 100% of the (NH₄)₂SO₄ concentration, respectively, serve as ice nuclei once the (NH₄)₂SO₄ number concentration exceeds 1 cm⁻³.

	НОМ	DU1	DU10	AS1	AS10	AS100		
Shortwave cloud forcing (W m ⁻²)	-48.2	-48.3	-47.0	-47.7	-47.7	-47.3		
Longwave cloud forcing (W m ⁻²)	29.5	29.3	25.8	29.0	28.7	28.4		
Net cloud forcing (W m ⁻²)	-18.7	-19.0	-21.2	-18.7	-19.0	-18.9		
lce water path (g m ⁻²)	22.3	21.7	14.1	21.2	20.3	19.4		
Ice crystal number (10 ⁶ cm ⁻²)	1.01	0.925	0.521	0.789	0.716	0.650		
	- (0 -	0.3) Wm	-2 ×					
	、 Co	, unteract	eract ~20% of CO ₂ forcing					

One-sentence summary:

Knowledge of 4D distribution of the composition and **phase** of sulfate particles is needed to improve the estimate of anthorogogeic sulfate direct and indirect forcing.

APPROACH

SULFATE PHASE TRANSITION SCHEME: DETAILS

Parameterization of CRH of sulfate particles (from Martin et al., 2003, GRL):

$$CRH_0(X) = -71925 + 1690X - 139X^2 + \frac{1770760}{25 + 0.5(X - 0.7)}$$

 $CRH_0(X) = 0$

ANNUAL AVERAGES IN BOUNDARY LAYER

Burden (natural + anthropogenic)

Phase transition measured in SGP site

Legend

- Deliquescence
- Efflorescence
- Both deliq and effl
- No transitions observed

Black: total number of events

In 101 runs in June 2007, efflorescence occurred 72% of the time for particles sampled at ambient RH. Deliquescence occurred in 13% of the runs.

Martin et al., 2008, GRL.

ANNUAL AVERAGES IN UPPER TROPOSPHERE

(above 500 mb)

Burden (natural + anthropogenic)

CONSISTENCY & DISCREPANCIES WITH PAST STUDIES

[NH₄] / [SO₄]

view that sulfate should be less neutralized in upper troposphere due to efficient scavenging of NH₃.

(grids: 46 X 72 X 30)

1

OBSERVATION DATA (S-Hemisphere)

NASA ER2, 65,000 feet (~20km) ASL

1

OBSERVATIONAL EVIDENCE (N-Hemisphere)

EXPLAINING PERSISTENT OBSERVATIONS OF NEUTRALIZED SULFATE IN UPPER TROPOSPHERE

SIMULATED IMPACT OF SULFATE NEUTRALIZATION (X) AND SULFATE PHASE

Solids Mass Fraction

Upper tropospheric sulfate is mostly neutralized and solid! Implications for atmospheric chemistry, cirrus formation...

ANTHROPOGENIC SULFATE AOT & DIRECT FORCING

0.000

<

Solids: 41% in burden, 26% in optical thickness, 37% in full-sky forcing; negative correlation between solids fraction and cloud fraction solids sulfate forcing.

SENSITIVITY ANALYSIS TO THE HYSTERESIS EFFECT

╢

(compared to the base case; anthropogenic component only)

"lower side" and "upper side" difference

FORCING DIFFERENCE DUE TO HYSTERESIS IN DIFFERENT REGIONS

Regional difference due to hysteresis can be as large as ~20%. Those are systematical biases.

Summary

- The dominance of solids in the upper troposphere arises in part from high sulfate neutralization, reflecting in our simulation a low retention efficiency of NH₃ upon cloud freezing.
- Anthropogenic sulfate particles in solid phase contributes 41% in burden, 26% in optical thickness, and 37% in full-sky direct climate forcing of sulfate.
- Hysteresis can result in the uncertainty in the estimate of sulfate forcing by 12% (-7% – +5%) in global average and 20% in various regions.
- More percentage of solids is expected as the industrial emission of sulfate is decreasing in U.S. and Europe.
- Normalized growth factor of optical thickness should be considered as a standard output to facilitate meaningful intercomparisons among different forcing calculations.

PRELIMINARY STUDY USING A SINGLE COLUMN MODEL AT ARM SGP SITE

RESULT SENSITIVITY TO RETENTION EFFICIENCY OF NH₃

CHANGE OF PARTICLE SIZE AND REFRACTIVE INDEX WITH HYGROSCOPICITY

Wang and Martin, 2007, JGR.

SEASONALITY

NEXT STEP: ADDING SULFATE PATHWAY FOR CIRRUS CLOUD FORMATION IN GEOS-5 GCM

OBSERVATIONAL EVIDENCE OF PHASE TRANSITIONS

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L22801, doi:10.1029/2008GL035650, 2008

Phase changes of ambient particles in the Southern Great Plains of Oklahoma

Scot T. Martin,¹ Thomas Rosenoern,¹ Qi Chen,¹ and Donald R. Collins² Received 11 August 2008; revised 23 September 2008; accepted 8 October 2008; published 18 November 2008.

Efflorescence occurred 72% of the time for particles sampled at ambient RH in June.

For other evidences, see reviewed in Martin (2001), *Chem. Rev. 2000, 100, 3403-3453*

Acknowledgement

NASA New Investigator Program and Radiation Sciences Program

GEST Visiting Fellows Program

NOAA Climate and Global Change Postdoctoral Fellowship program under the administration of UCAR visiting scientist program

COMPARISON WITH OTHER MODELS

	τ _{an} ×10 ⁴	SDCF	NSDCF ^a	NE ^b	NG_{τ}	Remarks	
Reddy et al. (2005)	300	-0.41	-135	9.90	2.30	For RH < 30%, E_{sd} applies. For RH > 30%, Mie-calculated E_{aq} values apply for increasing RH.	
<i>Koch et al.</i> (1999, 2001)	280	-0.68	-206	8.48	1.70	For RH < 60%, E_{sd} applies. For RH > 60%, E_{aq} at 85% RH and E_{sd} are interpolated to obtain E_{aq} at intermediate RH values.	
Schulz et al. (2006)							
Mean	190	-0.35	-161	9.10		Statistics from nine CTMs having the same emissions	
Standard deviation	±90	±0.15	±41	±2.70			
This Study							
Base Case	103	-0.17	-136	8.26	1.60	E_{sd} and E_{aq} depend on particle composition X. The hystereisis loop is fully considered in the base case.	

NSDCF = SDCF/ τ $NE = \tau/burden$ NG = $\tau_{with_hygroscopicity} / \tau_{no_hygroscopicity}$

Normalized growth factor of optical thickness should be another parameter in comparing CTM results.

Production and loss of HNO₃

Phase effect: increase in daytime + decrease in night time = ?

Next Steps (1)

Goal:

Include the sulfate phase into a GCM to study its effect on cirrus cloud formation and radiative forcing.

Approach:

Coupled the sulfate/ammonia cycle including sulfate phase transition in CTM with GCM.

sulfate physical state vs. scattering properties

Between DRH and CRH, sulfate particles can be in either solid or aqueous phase.

For aqueous sulfate particles, as RH increases,

r increases Q and E increase

However,

 β decreases

Overall, increase the aerosol forcing.

Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality

S. S. Brown,¹* T. B. Ryerson,¹ A. G. Wollny,^{1,2} C. A. Brock,¹ R. Peltier,³ A. P. Sullivan,³ R. J. Weber,³ W. P. Dubé,^{1,2} M. Trainer,¹ J. F. Meagher,¹ F. C. Fehsenfeld,^{1,2} A. R. Ravishankara^{1,4}

Nitrogen oxides in the lower troposphere catalyze the photochemical production of ozone (O_3) pollution during the day but react to form nitric acid, oxidize hydrocarbons, and remove O_3 at night. A key nocturnal reaction is the <u>heterogeneous hydrolysis of dinitrogen pentoxide</u>, N_2O_5 . We report aircraft measurements of NO_3 and N_2O_5 , which show that the N_2O_5 uptake coefficient, $\gamma(N_2O_5)$, on aerosol particles is highly variable and depends strongly on aerosol composition, particularly sulfate content. The results have implications for the quantification of regional-scale O_3 production and suggest a stronger interaction between anthropogenic sulfur and nitrogen oxide emissions than previously recognized.

Radiative Forcing Components

