Aerosol Indirect Effect in NCAR CAM: Sensitivity to Aerosol-Cloud Parameterizations

X. Liu

(Pacific Northwest National Laboratory)

Collaborators: X. Shi, S. J. Ghan, R. Easter, P. Rasch (PNNL) A. Gettelman, H. Morrison (NCAR) N. Meskhidze, J. Xu (NCSU) A. Nenes (Georgia Tech) C. Chuang (LLNL)

U.S. DEPARTMENT OF ENERGY

Aerosol Indirect Effect (AIE) in Climate Models

Twomey effect

Uncertainties in AIE from

- *Meteorology* (wind, precip, convection, etc.)
- *Aerosol representation* (bulk, modal, sectional, moment)
- *Aerosol treatment* (nucleation, wet removal, etc.)
- *Aerosol emission* (biomass burning, VOC, dust and sea salt)
- -3.0-3.0 -2.5-2.5-2.0 AE [Wm⁻²] [wm-2] -1.5Ä -1.0 -1.0-0.5 Kristjonsson Jones Kristjonsson Chan Jones Lohmonn Lohmonn Potstoyn olstoyn leon + std. dev *std.der Both IAEs Lifetime/Twomey effect -3.02.0 -2.5 1.5 [Wm - 2 물 1.0 0.5 on ones istions on Ghan Rotstoyn Lohmonn Heonysta.dev Willin Rot Gho Jon Kristen Loh Men Lohmann & Feichter (2005)

Lifetime effect

- <u>Aerosol-cloud interactions:</u>
- cloud droplet nucleation (activation of hygroscopic aerosol particles)
- *ice crystal formation* (homogeneous & heterogeneous nucleation of aerosols)
- precipitation formation

autoconversion (collision and coalescience of droplets) *accretion* (collection of droplets by precipitation)

Benchmark 7-Mode Modal Aerosol Model (MAM)

Simplified 3-mode version of MAM

Assume primary carbon is internally mixed with secondary aerosol. Neglect aerosol water transport.

Assume ammonium neutralizes sulfate.

coagulation condensation

Total transported aerosol tracers: 15

Computer time is 30% higher than bulk

Pacific Northwest NATIONAL LABORATORY

New Aerosol Processes

- New particle formation (in UT and BL)
- Coagulation within, between modes
- Dynamic condensation of trace gas (H2SO4, NH3) on aerosols
- Aging of primary carbon to accumulation mode based on sulfate coating from condensation & coagulation
- Ultrafine sea salt emissions from Martensson et al.
- A new secondary organic aerosol treatment: reversible condensation of SOA (gas)
- Aerosol optics from Ghan and Zaveri (JGR 2007)

CAM Cloud Microphysics & Aerosol-Cloud Interactions

- Two-moment scheme (Morrison-Gettelman) Predicts water/ice mixing ratio & number concentrations Gamma functions, simplified (m=0) for ice
 - 2-moment treatment extends to diagnostic precipitation
- Bergeron processes determine liquid/ice partition Vapor deposition, heterogeneous freezing Ice super-saturation allowed
- Droplet nucleation on aerosol (Abdul-Razzak & Ghan)
- Ice nucleation on aerosols (Liu et al 2007) Ice assumed to be spherical (fall speed & radiation)
- Consistent treatment of sub-grid cloud water for all relevant microphysics processes
- Consistent treatment of size distribution in radiation Shape parameters (g) describe look up table for cloud drops

CAM Simulations (camdev23_CAM3.6.28)

- MAM 3-mode version
- 5 years at 1.9°x2.5° resolution, PD and PI

Emissions:

- IPCC AR5 emissions for anthr. OM, BC, SO2, SO4
- AEROCOM emissions for natural DMS, SO2, SO4, injection heights and primary particle sizes
- Biogenic SOA(g) emission: apply yields on MOZART VOCs emissions

BC compared with global data

Black Carbon from Liousse [1996] & Cooke [1999] Compilations

Anthropogenic Indirect Effect (AIE)

Present – Past Shortwave Cloud Forcing (W/m2) Present – Past Longwave Cloud Forcing (W/m2)

Cloud Droplet Activation Schemes

Abdul-Razzak & Ghan (1998; 2000) - mechanistic

- For lognormal aerosol models
- Fit of parcel model simulation for max supersaturation
- Computationally efficient
- Kinetic limitations of droplet condensation are considered

Fountoukis & Nenes (2005) - mechanistic

- For lognormal aerosol models
- Derived from theoretical consideration
- Computationally efficient (need some iterations, and can be 20-40% more expensive than AR-G depending on mode number.
- Can treat very complex internal/external aerosol, and effects of organic films on droplet growth kinetics.

Cloud Droplet Number Concentration at 820 hPa

Abdul Razzak-Ghan

Fountoukis-Nenes

FN produces 20-30% higher CDNC than AR-G on global average

Pacific Northwest

Cloud Droplet Effective Radius at 820 hPa

Abdul Razzak-Ghan

Fountoukis-Nenes

LWP Sensitivity to Droplet Activation Scheme

LWP (g/m2) = 41 (AR-G); 46 (FN) △LWP(g/m²) = +5.1 (AR-G); +5.2 (FN) ← Same autoconversion scheme (KK)

Low-Cloud Cover Sensitivity to Droplet Activation Scheme

CLDLOW (%) = 40.0 (AR-G); 40.2 (FN) ∆CLDLOW(%) = +0.3 (AR-G); +0.5 (FN)

15

SWCF Sensitivity to Droplet Activation Scheme

SWCF (W/m²) = -50 (AR-G); -52 (FN) ∆SWCF(W/m²) = -2.2 (AR-G); -2.4 (FN)

Autoconversion Schemes

 10^{-1}

0

0.2

Beheng (1994)

$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = 6 \times 10^{25} n^{-1.7} \rho_a^{3.7} N_c^{-3.3} q_l^{4.7}$

Khairoutdinov-Kogan (2000, CAM3 MG)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = 1350 \ q_l^{2.47} \ N_c^{-1.79}$$

Liu-Daum (2004)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = \kappa_2 \left(\frac{3\rho_a}{4\pi\rho_w}\right)^2 \beta_6^6 \frac{q_l^3}{N_c} \operatorname{H}(R_6 - R_{6c})$$

Manton-Cotton (1977, CAM3 Default)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = C_{l,aut} q_l^2 \frac{\rho_a}{\rho_w} \left(\frac{q_l \rho_a}{\rho_w N_c}\right)^{1/3} \mathsf{H}(r_{3l} - r_{3lc})$$

Auto. rate ~ $N_c^{(-3.3, -1.79, -1.0, -0.33)}$

(a) $N_d = 100 \text{ cm}^{-3}$ 10-5 Autoconversion Rate (sec⁻¹) 10^{-7} 10⁻⁹ Beheng Berry 10^{-1} Khairoutdinov-Kogan

0.4

Autoconversion Rate f(ql, Nc)

Liu-Daum Manton-Cotton

0.8

1.0

LWP Sensitivity to Autoconversion Schemes

LWP (g/m2) = 40 (KK); 31 (BH); 38 (MC); 32 (LD) ∆LWP(g/m²) = 5.0 (KK); 5.0 (BH); 1.0 (MC); 2.0 (LD)

Low-Cloud Cover Sensitivity to Autoconversion Schemes

SWCF Sensitivity to Autoconversion Schemes

SWCF

∆SWCF (PD-PI)

SWCF (W/m2) = -49 (KK); -47 (BH); -51 (MC); -49 (LD) ∆SWCF (W/m²) = -2.2 (KK); -2.2 (BH); -1.9 (MC); -2.1 (LD)

Pacific Northwest

Summary

Different cloud droplet activation schemes lead to a change in LWP by 10 g/m2 and SWCF by 5 W/m2 in the storm track regions.

Anthropogenic AIE (cloud forcing change) ranges from -1.7 to -1.9 W/m2 on the global mean;

- Different auto-conversion schemes lead to a change in LWP by 30 g/m2 and SWCF by 10 W/m2 in the storm track regions.
 - Anthropogenic AIE ranges from -1.5 to -1.8 W/m2 on the global mean;

We don't find strong sensitivities of AIE to droplet activation schemes and autoconversion schemes!