CCN Formation: Microphysics and Chemistry

Peter J. Adams

Center for Atmospheric Particle Studies (CAPS)

AEROCOM Meeting October 7, 2009

1) Interactions of <u>chemistry</u> and <u>microphysics</u> in the global CCN cycle

2) The <u>CCN mode</u> is tightly coupled to and largely derived from the <u>ultrafine mode</u>

CCN Budget and Ultrafines

- How do CCN concentrations depend on:
- Nucleation rate and mechanism?
 - Fast (ternary) vs slow (binary) nucleation
- Primary particle emissions?
 - Important uncertainty for CCN
 - Do BC reductions slow global warming?
- OC composition / hygroscopicity?
- SOA formation rates?

Aerosol species

- Sulfate
- Sea-salt
- EC: ext/int mixed
- OC: hydro-phobic/philic
- Mineral dust

Microphysics

- TOMAS algorithm
- Condensation/coagulation
- Nucleation (binary, ternary, empirical "activation", ioninduced)

Host models

- GISS (GCM)
- GEOS-CHEM (CTM)

Size-resolved emissions w/ subgrid coagulation

<u>Chemistry</u>

$$H_2SO_4(g)$$

- $\mathsf{DMS} \to \mathsf{SO}_2 \to \mathsf{sulfate}$
- Dial in SOA "mechanism"
- EC/OC "aging": 1.5 days
- Modified Kohler theory (hydrophilic OM: κ = 0.12)

TOMAS Overview

- TwO-Moment Aerosol Sectional algorithm
 - Size range usually 10 nm 10 μm
 - 30 size sections (10 per decade of diameter)
 - Parameterized nucleation mode
 - Sometimes extended down to 1 nm (nucleation mode)
 - Moments = 1) aerosol number and 2) aerosol mass

Model Evaluation: CN10

╢

Model Evaluation: Marine Size Distributions

Civil and Environmental

Regional Nucleation Events

ENGINEERING

Nucleation and CCN

- Nucleation chemistry not understood
- Several proposed nucleation mechanisms
 - Binary ($H_2SO_4-H_2O$)
 - Ternary (H₂SO₄-NH₃-H₂O)
 - Ion-induced nucleation (also involves H₂SO₄)
- Nucleation rates vary by many orders of magnitude
- Scenario 1: Slow (binary) nucleation (Vehkamaki 2002)
- Scenario 2: Fast (ternary) nucleation (Napari 2002)

Nucleation and CCN

1

Nucleation and CCN

CCN(0.2%) Ratio 25 .4 .6 .8 .9 .95 1.05 1.2 1.5 2 3 4

CarnegieMellon

Civil and Environmental

Primary Emissions

.25 .4 .6 .8 .9 .95 1.05 1.2 1.5 2 3 4

- Primary emissions: EC/OC, plume sulfate, sea-salt
- Uncertainty from primary emssions greater
- Results subject to choice of "bounding values"
- Primary particles largely overlooked in terms of CCN budget

ENGINEE

CCN Formation Probability

- For any UF particle, the probability of becoming a CCN is a competition between
 - Condensational growth
 - Coagulational scavenging
- Small nuclei suffer compared to primary particles
 - Takes longer to grow
 - More diffusive \rightarrow higher collision probability
 - A greater number of larger particles to scavenge them

Black Carbon Reductions

- Many have suggested that BC reductions are a fast way to slow global warming
- But... BC controls will
 - Reduce primary particle emissions
 - CCN concentrations
 - Reduce the indirect effect (-0.3 to -1.8 W/m²)
- Will BC reductions slow global warming??
- Collaborators: John Seinfeld/Anne Chen (Caltech); Thanos Nenes (GaTech); Yunha Lee (CMU)

BC Reductions: Primary Particles

1

BC Controls Reduce CDNC

In global annual average,

50% FF: CDNC reduced by 4.6% 50% CARB: CDNC reduced by 8.7%

.4 .8 .9 .95 .97 .99 1.01 1.03 1.05 1.2 10 <u>Camegie Mellon</u>

BC Reductions: Forcing Assessment

- For a 50% reduction in fossil fuel EC/OC/N:
 - FF-BC absorption: 0.2 W/m² \rightarrow 0.1 W/m² = -0.1 W/m²
 - Semi-direct: 0.3 W/m² \rightarrow 0.23 W/m² = -0.07 W/m²
 - Snow albedo: 0.1 W/m² \rightarrow 0.07 W/m² = -0.03 W/m²
 - Net: -0.2 W/m² (reduced global warming)
- But...
 - Reduced indirect effect (this work) = +0.22 W/m²
 - Reduced OC cooling = ???
 - Are BC reductions approx. climate neutral?
- Caution: preliminary results
- CCN impacts of reducing black carbon appear to largely (completely?) offset climate benefits

Organic Aerosol Hygroscopicity

.5	.8	.9	.95	.97	.99	1.01	1.03	1.05	1.2	2

CarnegieMellon

•SOA production is major uncertainty on condensational growth of UF to CCN

Compare CCN0.2% predicted in:

•Base SOA Scenario: 19 Tg/yr (traditional biogenic)

•<u>High SOA Scenario</u>: 64 Tg/yr (+45 Tg/yr generic "anthropogenic")

Generic SOA "mechanism":

•45 Tg/yr generic precursor emitted

•Co-located with SO₂ (and ultrafine particles)

Oxidation timescale: 12 hours and 100% yield

Condensation only (non-volatile)

SOA Source

Plot shows ratio:

CCN0.2 (High SOA) CCN0.2 (Base SOA)

Conclusions

CCN Sensitivity to nicrophysics and chemistry

Factor	Bounds	CCN Sensitivity
Primary particles	3x	27%
SOA production	19 to 64 Tg/yr	12%
Nucleation	Binary/ternary	11%
OC hygroscopicity	к from 0.1 to 0.3	6%

- CCN budget coupled to ultrafine mode
 - Large fraction of CCN derived from growth of UF particles
 - CCN very sensitive to primary particles (including BC reductions)
 - ...but coagulational scavenging of UF particles also essential (e.g. relatively low sensitivity to nucleation)

