

CALIPSO aerosol products and recent applications Dave Winker, NASA LaRC

Zonal Mean Aerosol Extinction

Zonal Mean Extinction (V2.01,AIAB<0.01,SaF=SaI,CloudFree) Global 20060901_20061130 Night

Zonal Mean Extinction (V2.01,AIAB<0.01,SaF=SaI,CloudFree) Global 20070301_20070531 Night

Regional CALIOP-GOCART comparisons

- Version 3 algorithms now used for Level 1 forward processing
 - Starting from turn-on of CALIOP backup laser in March 2009
- Version 3 reprocessing of Level 1 is underway
 - All mission data to be reprocessed, from 7 June 2006
- Improved 532 nm daytime calibration
 - Daytime uncertainties improved from 10% to 5%
 - Stratospheric aerosol biases (mostly tropical) not yet corrected
- 1064 nm calibration: significant biases remain
 - Initial approach using cirrus targets more variable than expected
 - Investigating new approaches (sea surface, etc.)

- Uncertainties now provided for most parameters
- Aerosol and cloud profile products restructured and improved
 - Aerosol now reported at 5 km
 - Many added parameters, including data quality flags
- Algorithm Improvements:
 - Revised strategy for extinction retrievals boundary layer aerosol, constrained cirrus retrievals
 - New cloud ice/water phase algorithm
- Several significant bugs fixed

- Version 2:
 - Profiles of 532 and 1064 extinction and backscatter only
 - Cloud profiles reported at 5 km horizontal resolution
 - Aerosol profiles averaged to 40 km
- Both aerosol and cloud profiles now reported at 5-km horizontal resolution
 - Retrieved at 5-20-80 km, reported at 5 km
- Added new profiles:
 - 532 nm perpendicular backscatter, particle depolarization
 - Atmospheric description (cloud/aerosol/clear etc.)
 - Cloud fraction within the 5-km horizontal grid
- Added column parameters:
 - Column optical depth: cloud, aerosol, stratosphere
 - Column integrated attenuated backscatter (IAB)
- Added data quality information
 - Uncertainties, etc.

- Surface detection is now more reliable
 - Bugs in surface detection algorithms caused low marine clouds to sometimes be classified as ocean surface
- Handling of multiple scattering corrected
 - Multiple scattering corrections applied incorrectly to constrained retrievals (4% of cirrus) in Version 2
 - Multiple scattering corrections not propagated to lower layers
- Boundary layer cloud clearing fixed
 - Has biggest impacts in marine trade cumulus regions

File: C:\Projects\CALIPS0\2008-10-24 CALIPS0 & MODIS Cloud Fraction\fixedData\L2_2007-03-09T21-32-49ZD_VFM.hdf Date:Tue Nov 04 08:56:28 2008

1

Improved low-cloud statistics

Fraction

Version 2.01

Global mean cover of singlelayer low cloud reduced from 26.1% to 21.8%

Regional reductions as much as a factor of 5.

Version 3-alpha test

Coakley and Tahnk:

In large, cloud-free ocean regions (to avoid near-cloud effects) find CALIOP AOD agrees well with MODIS, but a small CALIPSO low bias

Future Directions (1/2)

CALIPSO-SSrefl (preliminary)

- Ocean surface reflectance depends on wind speed – use CloudSat measurements
 - AMSR-E to correct for water vapor
- Column transmission from CALIOP surface
 return
 - gives AOD directly, no microphysical assumptions
 - Current AOD uncertainty ~ 0.05

(Josset, Pelon, and Hu: IEEE, 2009)

- Three years of data acquired, instrument still healthy
- Version 3 data products due soon
 - All mission data to be reprocessed
- Further improvements planned after V3

- Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: "Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms", *J. Atmos. Oceanic Technol.*, doi:10.1175/2009JTECHA1281.1, in press
- Hunt, W. H, et al., 2009: "CALIPSO Lidar Description and Performance Assessment"
- Powell, K. A., et al., 2009: "CALIPSO Lidar Calibration Algorithms: Part I -Nighttime 532 nm Parallel Channel and 532 nm Perpendicular Channel"
- Liu, Z., et al., 2009: "The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance"
- Omar, A., et al., 2009: "The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm"
- Vaughan, M., et al., 2009: "Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements"
- Hu, Y., et al., 2009: "CALIPSO/CALIOP Cloud Phase Discrimination Algorithm"
- Young, S. A. and M. A. Vaughan, 2009: "The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description"