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Long Term Records of Dust Transport Over the Global Oceans: Past Results

and Future Challenges to Understanding the Oceanic Dust Record
Joseph M. Prospero, University of Miami
AEROCOM Workshop
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The North Atlantic is by far the ocean region most
heavily and consistently impacted by dust.




The North Atlantic is by far the ocean region that is most heavily
and consistently impacted by dust.

Forty years after the “discovery” of the African dust
phenomenon, we still know very little about the factors
controlling its long range transport and deposition to the Atlantic

Some recent (and some old) research provides some insights on
these processes.

Modelers: Please think about deposition!
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Barbados, West Indies.

Barbados Monthly Mean Dust: 1965-2006

Filter measurements of dust concentration in surface-level air at
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A Brief History of Saharan Aerosol Layer (SAL) Studies
The two foundation papers: from BOMEX

VOL. 77, NO. 27 JOURNAL OF GEOPHYSICAL RESEARCH SEPTEMBER 20, 1972

Vertical and Areal Distribution of Saharan Dust over the Western
Equatorial North Atlantic Ocean
JosepH M. PROSPERO

Rosenstiel Schoal of Marine and Atmospheric Science
University of Miami, Miams, Florida 33149

Tosy N. CARLSON
Atlantic Oceanographic and Meteorological Laboratories

Environmental Research Laboratories
National Oceanic and Atmospheric Administration, Miams, Florida 3312/

Marcna 1972 JOURNAL OF APPLIED METEOROLOGY VoLome 11

The Large-Scale Movement of Saharan Air Outbreaks over the
Northern Equatorial Atlantic!

Tosy N. CARLSON
National Hurricane Research Laboratory, NOAA, Miami, Fla. 33124

AND JOSEPH M. PROSPERO
University o Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fla. 337149

{(Manuscript received 20 July 1971)




BOMEX: The “Discovery” of the SAL | st ws?souons

The SAL: a hot dry dust-laden elevated
layer of air that originates over North
Africa and often covers large areas of the
tropical North Atlantic and Caribbean
during the summer months.

ProspErRO AND CARLSON
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Barbados: Typical dusty day, 12 August 2008

Suppressed clouds!



Forty Years Later:

What have we learned about African Dust transport?
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AERONET and MPLNet on Barbados

AERONET: B. Holben

MPLNet: J. Welton




MPL Barbados: 25 - 30 May 2009

MPLNET Level 1.0 Dato: Ragged_Point 20090625 (v2, MPL4A402Z)
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MPL Barbados: 25 - 30 May 2009 - Surface to 6km

MPLNET Level 1.0 Data: Rogged_Point 20080525 (v2, MPL44022)
Normelized Relative Backscatter (532.0 nm)
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NOTE: Data under about 500 meters difficult to interpret - instrument limitation and sea-salt.




MPL Barbados: 6 - 11 June 2009

Range: Surface to 6 km

MPLNET Level 1.0 Data: Ragged_Point 20090606 (v2, MPL44022)
Normalized Relutive Backscotter (532.0 nm)
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How can such thin layers persist for so long in a neutrally stable layer of air?

What about the effects of local heating due to solar absorption by the dust?
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MPL: The Temporal and Spatial Persistence of

Barbados Dust Layers
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| NOAA HRD GIV Flight, Barbados, 17Sep06




Rawinsondes 6 - 11 June 2009 : Barbados

!4\ 78954 TBPB Grantley Adams “L\ 78954 TBPB Grantley Adams
100 . 100

KL

1I.4I.| ... i /
1 10 June 2009

i r
; /
f
/
1 4 /
\ y
J /
F
s /
W
\ / A
# !
| ; #
/ /
b s
¢
! i
A A /
oy

i

78954 TBPB Grantley Adams
100

7]

‘\f‘ /‘}f

700 \u1/ L

o EE—A A
1000 [ < - <

jJJJJJJf/” Sooass

YANKE

0 W 2 30 40
12Z 06 Jun 2009 University of Wyoming

78954 TBPB Grantley Adams
100

00 T 1 i el / / /! / / 1 [ T7 T
- v Imim -'-"iﬂ Wl [l ’ . " - i v

b r 1 -l
|Lm‘u .LAA. N u,.n..L... i u‘m

10 20 30 40
University of Wyoming
. 1000 fs =~ - &

P |

Y s — :
1000 f - - - £

_ULU’/[\ NN T S S Fr

® M T AR

=10 0 10

2 30 40 -40 =30 2 30 40 =40 =30 20 30 40
University of Wyoming 12Z 10 Jun 2009 University of Wyoming 12Z 11 Jun 2009 University of Wyoming

-40 -30
122 09 Jun 2009




The Source of the Early
June 2009 Dust Event

The dust arrived on Barbados
5 days later, on 8 June — a
typical transit speed.

MODIS Terra 3 June 2009







« How are these thin layers formed?

« How do they maintain their integrity over such time and distance?

« What can they tell us about the process of aerosol transport and deposition?

MPLMET Level 1.0 Data: Ragged_Point 20000609 (v2, MPL44022) NET Level 1.0 Data: Ragged_Point 20030610 (v2, MPLA422) NET Level 1.0 Data: Ragged_Point 20080611 (v2, MPL44022)
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Thirty Years After BOMEX
PRIDE: The Puerto Rico Dust Experiment

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D19, 8587, de1:10.1029/2002JD002544, 2003

Vertical distributions of dust and sea-salt aerosols over Puerto Rico
during PRIDE measured from a light aircraft

H. Maring, D. L. Savioe, M. A. lzaguirre, and L. Custals

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA

J. S. Reid'
SPAWAR Systems Center-San Diego, San Diego, California, USA

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D19, 8586, doi:10.1029/20021D002493, 2003

Analysis of measurements of Saharan dust by airborne and ground-
based remote sensing methods during the Puerto Rico Dust
Experiment (PRIDE)

Jeffrey S. Rv:h:l,:'E James E. I{innc}',: Douglas L. "r"-r"asc[':-ha],E Brent M. I]D]hf:tl.,s
Ellsworth J. "r"'lr"lf:]n:m,3 S1-Chee Tsﬂj,f,3 Daniel P. E]Ethf:er,J‘ James R. I.'Zamr:-l::nat]],S
Sundar A. f.:ht'isn::nr:-hf:r,T P E. IEI::n]arr:,l::-,H Haflidi H. J Dtlssc:-n,‘* Tohn M. I_j1.-'1'ngsn::nt1,‘;l
Hal B. Z'»-Iaring,:“ Michael L. Meier, ' Peter Pilewskie, 2] oseph M. Pl’DEpEl’D,:“
Elizabeth A. Reid,” Lorraine A. Remer.” Philip B. Russell,'* Dennis L. Savoie,'”

Alexander Smimm-‘,ﬁ and Didier Tanré"




PRIDE Aerosol Vertical Profiles

Est. Mass Concentration {1g m~)
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Atmospheric soundings and aircraft profiles for a day with: TOP clean marine conditions (8 July
2000); BOTTOM, SAL transport conditions (21 July 2000). First column, thermodynamic state
variables. Second column, FSSP number concentration (1.5-3 um, thick solid lines; 3—17 um, thin
solid lines), and estimated coarse mode particle mass concentration (dashed lines).



Does Stokes Settling Play a Discernable Role in
Affecting Dust Vertical Distributions?

(And dust deposition rates to the ocean?)
Part I. Over the Western Atlantic

Short Answer: Apparently Not.

Observation:
Compared concentration in the four larger-size bins (3-6, 6-11,
11-14, and 14-17 um) to that in the smallest, 1.5 - 3um.

*In general, observed no substantial and consistent changes in
particle size ratios within the bulk of the dust layers and in the
MBL under SAL conditions.

Conclusion:
*Stokes settling effects NOT evident in vertical distributions.

*Dust dry deposition processes to the ocean (which would be
strongly size dependent) are NOT a dominant removal
mechanism.




Stokes Settling & Layers: Visualized

MPLNET Level 1.0 Data: Ragged_Point 20080610 (v2, MPL44022)
Nurmulized Relotive Backscotter (522.0 nm)

At 8 um diam, settling
velocity is 0.25cm s,
215 m day-1 Over 6 days
~1.2 km.

At 5um, ~100 m day1,
0.6 km over 6 days.
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So - how does dust get from the SAL to the MBL?



Does Stokes Settling Play a Discernable Role in

Affecting Dust Size Distributions?
Part Il: Across the entire Atlantic

Short Answer: Yes but not in a simple way

—— |zafa Dust

] d » July 1995, Tenerife:

= Puerto Rico Dust ¥ Measurements made of aerosol size at a
[ mountain top observatory on Tenerife
during July 1995 using a TSI APS Model
3310 and a TSI SMPS Model 3934L .

o
~
1

« July 2000 in PRIDE
Same measurements made using the
very same instruments.
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Dust Aerosol Geometric Diameter (um)

Peak height normalized dust aerosol volume size
distributions from the free troposphere at Izana,
Tenerife, Canary Islands (solid line with solid
triangles) and from the marine boundary layer at
Puerto Rico (dashed line with solid circles). Error bars
represent one standard deviation. [Maring et al., 2003]

Maring et al., (2003) Mineral dust aerosol
size distribution change during
atmospheric transport,

J. Geophys. Res., 108




Does Stokes Play a Role in Dust Vertical Distributions
Part Il: Across the entire Atlantic (cont'd)

—e— Measurements ((Izafa - Puerto Rico) / zaia) . Assuming Simple

—— Model 1 ((Before - After) / Before) StOkeS Settling (MOdel 1),
= = Model 2 ((Before - After) / Before) the partICIGS in the upper
Size ranges are removed

| Stokes - 0.33 cm s/\ too rapidly.
Stokes « A good match is

obtained if a uniform
upward velocity is added
to the calculated Stokes
l“*“l settling velocities.

) DustGeometnc Diam er(um)

o
T

o
»

o
X

Fraction Removed

Fraction of dust particles removed from SAL during atmospheric transport as a function of particle size.

““Measurements’ - estimate of the change in dust size distribution that takes place between west coast of
North Africa and 5000 km west at Puerto Rico (solid line with standard deviation).

“Model 1 - particle removal by Stokes gravitational settling alone after 5.5 days of atmospheric transport
(solid line).

“Model 2"- particle removal by gravitational settling minus an upward velocity of 0.33 cm s after 5.5 days of
atmospheric transport (dashed line). [Maring et al., 2003]




We need more research on the processes that control dust (and other
aerosol) transport over the central and western North Atlantic — especially
on the relative importance of wet and dry removal processes.

Dust models should focus on particle size ranges that would be sensitive
to size changes observed (or not observed) here.

We need greater cooperation between the ocean and atmospheric
communities if we are to understand the processes that affect dust
transport and deposition to the ocean and how these processes might
change in the future with changing climate.

Caveat! All measurements presented here were made in summer in the
tropical North Atlantic! There is essentially no data from the South Atlantic
where we know huge amounts of dust and smoke are transported in boreal
winter.










Summary: Particle Physical Properties and Long
Range Transport

The physical properties of dust transported across the Atlantic

are remarkably uniform.

The uniformity of size distribution in the vertical suggests that
Stokes settling is not a major factor in redistributing dust.

The uniformity of size across the Atlantic suggests that that the
removal processes acting on the dust are NOT strongly size
dependent. Suggests that wet deposition is dominant over dry.

The uniformity of size from event-to-event suggests that dust
events do not carry a strong signal of source soil particle size
properties or dust generating/transport processes that might

affect size distributions. (Caveats!)

The presence of persistent (long-lived, long-traveled) dust layers
presents a challenge to our understanding of long range
transport.




Thank You



What About Winter -
Spring Dust?

A huge quantity of dust and biomass burning
products is transported across the equatorial
Atlantic from Africa during boreal winter and

spring.

There are no aerosol-focused measurements
from this region except for an occasional ship
cruise.

The source processes over Africa and the
transport dynamics over the Atlantic are

markedly different in Winter compared to e
Summer, s A "

African Dust Outbreaks: Temporal and Spatial Variability
over the Tropical Atlantic Ocean
J. Huang, C. Zhang, J. M. Prospero. Submitted JGR May 09




Deposition Processes

What do we know about atmospheric dust deposition processes and how can we improve our knowledge about them?

Given the importance of Fe in ocean biogeochemistry, what aerosol properties should we measure and where should
we measure them?

| make the case that greater cooperation is needed between the ocean communities and the atmospheric communities
if we are to understand the processes that affect ocean deposition and how this might change in the future with
changing climate.



Finally

A huge quantity of dust and biomass burning
products is transported across the equatorial
Atlantic from Africa during boreal winter and
spring.

There are no aerosol-focused
measurements from this region except for
an occasional ship cruise.




Is African Dust Hygroscopic?
If so, How Does it Respond to RH Changes?

Answer: 1. Very little and 2. Not much.

PRIDE: the Volume Median Diameters (VMDs) of dust aerosols
at high relative humidity in the MBL were statistically
indistinguishable from the VMDs of dust particles at low relative
humidity in the SAL. Thus it appears that dust particles over the
TNAO and Caribbean do not change size significantly due to the
absorption of water up to a relative humidity of 97%. [Maring et

al. 2003]
- Has implications for aerosol chemistry re surface processes

Barbados: We obtained the same result in a surface-level field
experiment at our tower site in 1994

Li, X., et al. (1996), Dominance of mineral dust in aerosol light-
scattering in the North Atlantic trade winds, Nature, 380(6573),
416-4109.




How can we explain the existence and persistence of

thin dust layers in the SAL over the Western Atlantic?
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Convection would quickly dissipate any such layering.

What about aerosol heating? The SAL is neutrally stable.
- Any significant heating would lead to internal mixing.

Suppressed condition under SAL dust events. Only small Cu.

What is the role of mixing in Easterly Waves and Tropical Cyclones?

For the most part, isolated clouds are not mixing dust from deep within the SAL to
the surface.




AERONET Sun Photometer at Barbados




Few towers penetrate the SAL



What is the origin of the dust in the MBL over the
Western Atlantic?

Est. Mass Concentration {i1g m®)
40 60 80

Observation: In summer in the
presence of the SAL, there is always
some dust in the MBL. On some
days there is more dust in the MBL
than in the SAL (example at right).

3-17 um

Altitude (m)

The particle size measurements argue that Stokes settling is not significant.

Deep clouds are not mixing dust from deep within the SAL to the surface. If they
were, we would see moistening of the SAL.

But smaller Isolated clouds could be playing a role along with entrainment at the
base of the SAL.

If dust passes through the trade inversion into the CBL, clouds would mix the
dust and transport it into the MBL much more rapidly than gravitational settling.
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NOAA SAL Flight: Sept. 27, 2005

 Photos taken from the NOAA G-IV jet on 27 September 2005 from ~45,000 ft in the
central Atlantic at ~14°N 35°W [Dason Dunion, NOAA HRD]







University of Miami Global Ocean Networks: Early 1980s - Late 1990s
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The Intercontinental Tracking of a Dust Outbreak
Relationship to Easterly Waves & Dust Model

Movement of Wave Axis, Dust Pulse, Warm Center
and Axis of Mid-Level Jet: 1to 13 July 1979
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FIG. 14. Continuity chart showing the progress of the axis of
an African wave disturbance and the leading edge of the
dust plume over the period 1-13 July 1970. The positions of
the easterly wind maximum in the Saharan air and the
centers of maximum potential temperature are shown
for the period 10-14 July. The location of the leading
edge of the dust plume during the period 8-13 July was
determined on the basis of where Saharan air could be
found on the temperature soundings.
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Fig. 20. Schematic model of air motions
accompanying the movement of African
disturbances and the associated dust pulses
from Africa.




Schematic "model" of the Saharan Air Layer (SAL)
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FIG. 2. Vertical temperature (T) and dew point (7,;) sounding on skew T—logP
diagram for Saharan air layer sounding over ocean (heavy solid and dashed
lines) and over the desert (thin solid and dashed lines, where different from
ocean). The top of the dust layer is considered to be at 500 mb. The dashed
lines 8 = 315 K and r = 2.4 g kg™ represent the constant potential temperature
(#) and mixing ratio (r) for the desert case.

Carlson, T. N., and J. M. Prospero (1972), The Large-Scale Movement
of Saharan Air Outbreaks over the Northern Equatorial Atlantic, Journal

of Applied Meteorology, 11(2), 283-297.
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Fig. 20. Schematic model of air motions accompanying the
movement of African disturbances and the associated dust
pulses from Africa.

Carlson, T. N., and J. M. Prospero (1972), The Large-Scale Movement of
Saharan Air Outbreaks over the Northern Equatorial Atlantic, Journal of
Applied Meteorology, 11(2), 283-297.



Carlson, T. N., and J. M. Prospero (1972) The
Large-Scale Movement of Saharan Air Outbreaks

over the Northern Equatorial Atlantic, Journal of
Applied Meteorology, 11(2), 283-297.

One of the first papers to attempt to use satellite
Images to understand the long-range transport of
aerosols and the relationship to metrological
features.

FIG. 13. ATS-111 satellite photographs of the equatorial Atlantic
for3 (a),5 (b) and 6 (c) July 1970. In 13b the serrated edge

marks the leading edge of the cloud discontinuity and the dotted
line indicates the edge of the clear area, while 13c shows the
larger view of the advancing cloud discontinuity.




Barbados Daily Dust Concentrations: 2003 - 2004
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Yet there has been remarkably little research of dust transport over this ocean region in the sense of physical
measurements of dust aerosols and the meteorological processes associated with the dust transport.

But there has been nothing over the central Atlantic.
Over the western Atlantic, the history can be briefly summarized.

The absence of research is remarkable considering all the papers that have been written on the dust impact on
radiation, precipitation, ocean deposition.

Dust suppressing TC development.
Dust through radiative processes increasing atmospheric stability, suppressing convection.
Reduction of insolation at ocean surface.

Proposal to modify hurricanes by seeding TCs - based on model studies in the absence of ANY aerosol measurement
in TC environments.



The North Atlantic is ocean region that is most heavily and persistently impacted by dust transport.
There are many satellite products that show this.
Models show this.

Yet there has been remarkably little research of dust transport over this ocean region in the sense of physical measurements of
dust aerosols and the meteorological processes associated with the dust transport.

There has been extensive research on dust and other aerosols over the eastern Atlantic in ACE-2 (although dust was NOT a
focus) and more recently, and much more intensively in the AMMA program.

But there has been nothing over the central Atlantic (except Albrecht-Huebert which was not dust focused).

Over the western Atlantic, the history can be briefly summarized.

BOMEX in 1969 (papers by Carlson and Prospero.

Then a thirty year gap to PRIDE.

The absence of research is remarkable considering all the papers that have been written on the dust impact on radiation,
precipitation, ocean deposition. Dust suppressing TC development. Dust through radiative processes increasing atmospheric

stability, suppressing convection. Reduction of insolation at ocean surface. Proposal to modify hurricanes by seeding TCs - based
on model studies in the absence of ANY aerosol measurement in TC environments.
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