Model Validation of CCCma³ AGCM4

Knut von Salzen¹, Norman McFarlane¹, Jiangnan Li¹, Cathy Reader¹ Glen Lesins², Ulrike Lohmann², Betty Carlin²

¹ MSC, CCCma, Victoria, British Columbia, Canada
² Dalhousie University, Halifax, Nova Scotia, Canada

³ Canadian Centre for Climate Modelling and Analysis

Presented at AEROCOM Workshop, Paris, June 2-3, 2003

Sulphur Cycle in AGCM4: Results

SO₄⁼ burden (in µgS/m²)

Sulphur Cycle in AGCM4: Comparisons With Observations Near Ground

Sulphur Cycle in AGCM4: Comparisons With Observations Near Ground

Sulphur Cycle in AGCM4: Comparisons With Observations Near Ground

Sea Salt Aerosol in AGCM4: Results

Sea salt concentration in first model layer (in µg/kg)

JJA DJF 6.31 10.00 15.85 25.12 0.25 0.40 0.63 1.00 1.58 2.51 3.98

Sea Salt Aerosol in AGCM4: Comparisons With Observations Near Ground

Data: Prospero and Savoie

Sulphur Cycle in CCCma AGCM4: SO_x Emissions

36-12 1e-11 3e-11 1e-10 Se-10 1e-09 Je-08 1e-08 Se-08 1e-07 3e-07 1e-08

36-12 1e-11 3e-11 1e-10 5e-10 1e-09 Je-08 1e-08 3e-08 1e-07 5e-07 1e-06

Tracer Transport in AGCM4: Methodology

Options for tracer advection in AGCM4:

- * Spectral
- * Semi-Lagrangian

Tracer Transport in AGCM4: Idealized Tests

wid= 0.0125000 del= 1.00000

Courtesy W. Merryfield

Sea Salt Aerosol in AGCM4: Parameterization of Mass Size Distribution

Parameterization of Convection: Basic Equations

Mass
$$\rho \frac{\partial a}{\partial t} = -\frac{\partial}{\partial z} (\rho a w_c) + E - D$$
Scalars $\rho \frac{\partial}{\partial t} (a \chi_c) = -\frac{\partial}{\partial z} (\rho a \overline{w} \overline{\chi}^c) + E \chi - D \chi_c + \rho a S_{\chi}$ Momentum $\rho \frac{\partial}{\partial t} (a w_c) = -\frac{\partial}{\partial z} (\rho a \overline{w^2}^c) - D w_c + \rho a \frac{B_c}{1 + \gamma} - \frac{\partial}{\partial z} (a P_c)$

Parameterization of Cloud-Chemical Processes

Oxidation of S(IV) in cloud liquid water

$$\begin{split} S(IV) + O_3 &\longrightarrow S(VI) + O_2 & (Maahs, 1983) \\ S(IV) + H_2O_2 &\longrightarrow S(VI) + H_2O & (Martin, 1984) \\ [S(IV)] &= [SO_2] + [HSO_3^{-}] + [SO_3^{-}], \quad [S(VI)] = [SO_4^{-}] \end{split}$$

Equilibrium between gaseous and dissolved species

$H_2O \iff H^+ + OH^-$	$NH_3(g) \leftrightarrow NH_3(aq)$
$SO_2(g) \leftrightarrow SO_2(aq)$	$SO_2(aq) \leftrightarrow HSO_3^- + H^+$
$O_3(g) \leftrightarrow O_3(aq)$	$HSO_3^- \leftrightarrow H^+ + SO_3^=$
$H_2O_2(g) \leftrightarrow H_2O_2(aq)$	$CO_2(aq) \leftrightarrow HCO_3^- + H^+$
$CO_2(g) \leftrightarrow CO_2(aq)$	$NH_3(aq) + H^+ \leftrightarrow NH_4^+$
$HNO_3(g) \longleftrightarrow HNO_3(aq)$	$HNO_3(aq) \leftrightarrow H^+ + NO_3^-$

Sulphur Cycle in AGCM4: Comparisons With Observations During PEM

Sulphur Cycle in AGCM4: Comparisons With Observations During PEM - Using Spectral Advection/Hybrid Variable

Sulphur Cycle in AGCM4: Comparisons With Observations During PEM - Using Semi-Largrangian Transport

Sulphur Cycle in AGCM4: Results

