Soot microphysical effects on liquid clouds, a multimodel investigation D. Koch^{1,2}, Y. Balkanski³, S. E. Bauer^{1,2}, R. C. Easter⁸, S. Ferrachat⁴, S. J. Ghan⁸, C. Hoose^{10,7}, J. E. Kristjansson¹⁰, X. Liu⁸, U. Lohmann⁴, S. Menon⁹, J. Quaas⁶, M. Schulz^{10,3}, Ø. Seland⁵, T. Takemura¹¹, N. Yan³ ## Accepted to ACPD - Although "soot" (carbonaceous aerosols) warms climate from direct and snow-albedo effects, its effects on clouds are very uncertain and may be cooling: - 1) semi-direct effects (both positive and negative, but global models mostly negative, Koch and Del Genio, ACP, 2010) - 2) Ice and mixed-phase clouds (positive?) - 3) Liquid cloud indirect effects (focus of this study) Two previous studies: - 1. Chen et al., 2010 showed negative effect; - 2. Bauer et al., 2010 showed negative for biofuel but positive for fossil fuel BC. More models are needed! ### **Experiments** Using similar model configuration as Quaas et al. (2009) - 1. FF reduce all fossil fuel BC - 2. BF reduce all biofuel BC and OC - 3. D remove all diesel BC and OC Compare indirect effects for these with full year-2000 experiments #### Models - CAM-Oslo - CAM-PNNL - ECHAM5 - GISS - LSCE - SPRINTARS First 4 models include detailed aerosol microphysics: nucleation, condensation-mixing, coagulation. Aerosol mixing changes affect the CCN population #### Soot removal: 2 competing effects on CCN - 1. Fewer particles, fewer CCN - 2. Secondary species that were on soot now deposit on other particles or nucleate new particles. These may activate faster, more CCN. - BF (biofuel BC+OC) reduction: 1. dominates - a) Bigger particles - b) BC + OC (OC makes more hygroscopic) - c) Expt has Bigger emission reduction - FF (fossil fuel BC) reduction: 2. also important - a) BC only (low hygroscopicity) - b) Smaller particles # Cloudy-sky effect of soot reduction Wm⁻² Average of models Range BF +0.11 -0.08 to +0.11 FF -0.08 -0.21 to +0.03 BF reduction usually causes warming FF (BC) reduction usually causes cooling (Diesel reduction had small response) # Cloudy sky radiative effect All models have BF > FF ### Caveats, conclusions - 1. Lots of variability among models and within each (standard deviation similar to signal size) - 2. Experiments idealized: - BF is unrealistically big emission reduction. - FF is BC only, if co-emitted OC and SO₂ were reduced then the effect could reverse. - 3. Nonlinearities in both aerosol microphysics and indirect effect. - Catch-22: More realistic emission reductions are unlikely to be large enough to get statistically significant response.