# Radiative forcing of black carbon and mineral dust deposited to snowpack

Mark Flanner

September 30, 2010 AeroCom Meeting, Oxford



## Outline

#### 1 Calling all BC and dust deposition fields!

## 2 Background

- 3 AeroCom Experiments
- 4 Future Directions

#### Snow darkening from BC and other "snowsols"

#### Snow darkening from BC and other "snowsols"



Part-per-billion levels of BC significantly reduce snow albedo because:

#### Snow darkening from BC and other "snowsols"



Part-per-billion levels of BC significantly reduce snow albedo because:

 $\bullet\,$  Black carbon visible absorptivity is  $\sim 10^5$  greater than ice

#### Snow darkening from BC and other "snowsols"



Part-per-billion levels of BC significantly reduce snow albedo because:

- ullet Black carbon visible absorptivity is  $\sim 10^5$  greater than ice
- Snow scatters visible radiation efficiently via refraction
  - A typical reflected green photon undergoes  $\sim$  1000 scattering events before emerging from the top of snowpack

#### Snow darkening from BC and other "snowsols"



Part-per-billion levels of BC significantly reduce snow albedo because:

- ullet Black carbon visible absorptivity is  $\sim 10^5$  greater than ice
- Snow scatters visible radiation efficiently via refraction
  - $\bullet~$  A typical reflected green photon undergoes  $\sim 1000~{\rm scattering}$  events before emerging from the top of snowpack
- Longer persistence in near-surface snow than atmosphere.

# Albedo perturbation from impurities



#### Albedo perturbation from impurities



• Simulate it yourself at: http://snow.engin.umich.edu

# Springtime uniqueness



• Solar energy incident on snowpack peaks in March-May

#### Springtime uniqueness



- Solar energy incident on snowpack peaks in March–May
- This is also the season of maximum albedo feedback strength: d(albedo)/dT (Hall and Qu, 2006, Fernandes et al., 2009)

#### Global-scale studies on snow darkening

The Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled with the NCAR CAM/CLM model

- 5 spectral bands
- 5 vertical snow layers
- Snow aging/microphysics model (Flanner and Zender, 2006)
- Particle removal with meltwater
- BC optical properties from Bond and Bergstrom (2006)

#### Global-scale studies on snow darkening

The Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled with the NCAR CAM/CLM model

- 5 spectral bands
- 5 vertical snow layers
- Snow aging/microphysics model (Flanner and Zender, 2006)
- Particle removal with meltwater
- BC optical properties from *Bond and Bergstrom* (2006)
- Coupled atmosphere-land aerosol treatment (via deposition) (e.g., Rasch et al, Mahowald et al, Liu et al) ...

#### Global-scale studies on snow darkening

The Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled with the NCAR CAM/CLM model

- 5 spectral bands
- 5 vertical snow layers
- Snow aging/microphysics model (Flanner and Zender, 2006)
- Particle removal with meltwater
- BC optical properties from Bond and Bergstrom (2006)
- Coupled atmosphere-land aerosol treatment (via deposition) (e.g., *Rasch et al, Mahowald et al, Liu et al*) ... **or**:
- Drive CLM-offline with aerosol deposition fields from external sources (e.g., AeroCom)

# Spatial/temporal characteristics of BC/snow forcing



 Forcing operates mostly in local springtime, when and where there is large snow cover exposed to intense insolation, coincident with peak snowmelt

# Spatial/temporal characteristics of BC/snow forcing



- Forcing operates mostly in local springtime, when and where there is large snow cover exposed to intense insolation, coincident with peak snowmelt
- Global forcing is dominated by fossil fuel and biofuel sources of BC, but strong biomass burning events can dominate Arctic forcing

# Spatial/temporal characteristics of BC/snow forcing



- Forcing operates mostly in local springtime, when and where there is large snow cover exposed to intense insolation, coincident with peak snowmelt
- Global forcing is dominated by fossil fuel and biofuel sources of BC, but strong biomass burning events can dominate Arctic forcing
- Global-mean forcing (including snow and sea-ice):
  ~ 0.03 0.06 W m<sup>-2</sup> (Koch et al, Rypdal et al, Hansen et al, Jacobson)



• Efficacy (Hansen et al., 2005):

$$\left[\frac{\Delta T_s/F}{\Delta T_s(CO_2)/F(CO_2)}\right]$$

(2)

# Efficacy

• Efficacy (Hansen et al., 2005):

$$\left[\frac{\Delta T_s/F}{\Delta T_s(CO_2)/F(CO_2)}\right]$$
(2)

 $\bullet\,$  Our equilibrium climate experiments indicate that BC/snow forcing has efficacy of  $3\pm1$ 

# Efficacy

• Efficacy (Hansen et al., 2005):

$$\left[\frac{\Delta T_s/F}{\Delta T_s(CO_2)/F(CO_2)}\right]$$
(2)

- $\bullet\,$  Our equilibrium climate experiments indicate that BC/snow forcing has efficacy of  $3\pm1$
- Reason 1: All of the forcing energy is deposited directly in the cryosphere, a component of the Earth System responsible for powerful albedo feedback

#### The importance of snow grain size

- Snow exhibits large variability in grain size  $(30 < r_e < 2000 \,\mu\text{m})$ ,  $r_e \propto (\text{specific surface area})^{-1}$
- Grain size determines pure snow albedo, depth profile of absorption, and the magnitude of perturbation by impurities



# Springtime forcing from BC and dust



- Springtime snow-averaged surface forcings (*Flanner et al.*, 2009)
  - Eurasia:  $+3.9 \text{ W m}^{-2}$ (1.0 W m<sup>-2</sup> from dust)
  - North America:  $+1.2 \text{ W m}^{-2}$ (0.2 W m<sup>-2</sup> from dust)

# Springtime forcing from BC and dust



- Springtime snow-averaged surface forcings (*Flanner et al.*, 2009)
  - Eurasia:  $+3.9 \text{ W m}^{-2}$ (1.0 W m<sup>-2</sup> from dust)
  - North America:  $+1.2 \text{ W m}^{-2}$ (0.2 W m<sup>-2</sup> from dust)
- BC emissions from Asia increased from
  - $\sim 1.6-2.6\,\text{Tg/yr}$  during
  - 1980-2000 (Bond et al., 2007)

#### Sources of uncertainty

Perturbed physics experiments to characterize forcing uncertainty (*Flanner et al.*, 2007)

Table: Range in global-mean BC/snow radiative forcing resulting from reasonable ranges of the following factors: (*Flanner et al.*, 2007)

|                             | Low        | High  |
|-----------------------------|------------|-------|
| BC Emissions                | -46%       | +100% |
| Snow Aging                  | -42%       | +58%  |
| Melt Scavenging             | -31%       | +8%   |
| Optical Properties          | -12%       | +12%  |
| Snow Cover Fraction         | -17%       | +8%   |
| Absorption by Dust (skewed) | $\sim \pm$ | 20%   |

#### Sources of uncertainty

Perturbed physics experiments to characterize forcing uncertainty (*Flanner et al.*, 2007)

Table: Range in global-mean BC/snow radiative forcing resulting from reasonable ranges of the following factors: (*Flanner et al.*, 2007)

|                             | Low        | High  |
|-----------------------------|------------|-------|
| BC Emissions                | -46%       | +100% |
| Snow Aging                  | -42%       | +58%  |
| Melt Scavenging             | -31%       | +8%   |
| Optical Properties          | -12%       | +12%  |
| Snow Cover Fraction         | -17%       | +8%   |
| Absorption by Dust (skewed) | $\sim \pm$ | 20%   |

Something important is missing here ....

#### Sources of uncertainty

Perturbed physics experiments to characterize forcing uncertainty (*Flanner et al.*, 2007)

Table: Range in global-mean BC/snow radiative forcing resulting from reasonable ranges of the following factors: (*Flanner et al.*, 2007)

|                             | Low        | High  |
|-----------------------------|------------|-------|
| BC Emissions                | -46%       | +100% |
| Snow Aging                  | -42%       | +58%  |
| Melt Scavenging             | -31%       | +8%   |
| Optical Properties          | -12%       | +12%  |
| Snow Cover Fraction         | -17%       | +8%   |
| Absorption by Dust (skewed) | $\sim \pm$ | 20%   |

Something important is missing here ... transport and deposition

#### Methods and Experiments

 Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions
- Snowpack physics are fully active (meltwater removal of aerosols, snowpack growth/decay and layer division/combination of masses),

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions
- Snowpack physics are fully active (meltwater removal of aerosols, snowpack growth/decay and layer division/combination of masses), but evolution is constrained by fixed atmospheric state

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions
- Snowpack physics are fully active (meltwater removal of aerosols, snowpack growth/decay and layer division/combination of masses), but evolution is constrained by fixed atmospheric state
- Model averaging period: 1995–2004 with 5 years spinup, applying annually-repeating deposition

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions
- Snowpack physics are fully active (meltwater removal of aerosols, snowpack growth/decay and layer division/combination of masses), but evolution is constrained by fixed atmospheric state
- Model averaging period: 1995–2004 with 5 years spinup, applying annually-repeating deposition
- Forcing from black carbon and mineral dust

- Apply monthly-resolved aerosol deposition fields from present-day AeroCom experiments to drive the NCAR CLM/SNICAR snow model and quantify land-snow radiative forcing
- Wet and dry deposition fields partitioned into hydrophilic and hydrophobic snowpack components (unique optical properties)
- "Offline" land model forced with atmospheric boundary conditions
- Snowpack physics are fully active (meltwater removal of aerosols, snowpack growth/decay and layer division/combination of masses), but evolution is constrained by fixed atmospheric state
- Model averaging period: 1995–2004 with 5 years spinup, applying annually-repeating deposition
- Forcing from black carbon and mineral dust
- Here, examine AeroCom:
  - Phase I "B" experiments (identical emissions)
  - Phase II "A2CTRL" experiments

# BC Deposition in A2CTRL



#### Dust Deposition in A2CTRL



14/25

# Phase I (B) Global forcing

Table: Global annual-mean radiative forcing of BC and mineral dust in land-based snowpack  $[W\,m^{-2}]$ 

| Model    | BC    | Mineral dust |
|----------|-------|--------------|
| ARQM     | 0.022 | 0.010        |
| GISS     | 0.015 | 0.007        |
| LOA      | 0.023 | 0.006        |
| LSCE     | 0.023 | 0.007        |
| MATCH    | 0.022 | 0.008        |
| TM5      | 0.025 | 0.005        |
| UIO-CTM  | 0.021 | 0.007        |
| UIO-GCM  | 0.021 | N/A          |
| ULAQ     | 0.027 | 0.006        |
| UMI      | 0.021 | 0.008        |
| Mean     | 0.022 | 0.007        |
| $\sigma$ | 14%   | 30%          |

# Phase II (A2CTRL) Global forcing

Table: Global annual-mean radiative forcing of BC and mineral dust in land-based snowpack  $[W\,m^{-2}]$ 

| Model      | BC    | Mineral dust |
|------------|-------|--------------|
| CAM4-BAM   | 0.023 | 0.026        |
| CAM4-Oslo  | 0.023 | 0.006        |
| CAM-Oslo   | 0.023 | 0.006        |
| HadGEM2-ES | 0.027 | 0.002        |
| MPIHAM-V2  | 0.022 | 0.011        |
| Mean       | 0.024 | 0.010        |
| $\sigma$   | 8%    | 90%          |

## BC/Snow Forcing in Phase I B



17 / 25

## BC/Snow Forcing in A2CTRL



# Dust/Snow Forcing in A2CTRL



# Seasonal Cycle of BC/Snow Forcing



Figure: Phase I B

Phase II A2CTRL

• Peak forcing in March or April

#### Seasonal Cycle of Dust/Snow Forcing



# Spring BC/Snow Forcing in A2CTRL



# Spring Dust/Snow Forcing in A2CTRL



 Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields)

• Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields) Contact: flanner@umich.edu

- Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields) Contact: flanner@umich.edu
- Comparison with observations (e.g., Doherty et al., 2010)

- Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields) Contact: flanner@umich.edu
- Comparison with observations (e.g., Doherty et al., 2010)
- Prescribe observed snow cover in CLM/CESM

- Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields) Contact: flanner@umich.edu
- Comparison with observations (e.g., Doherty et al., 2010)
- Prescribe observed snow cover in CLM/CESM
- Include sea-ice forcing (which requires a different model)

- Collect more A2CTRL and Hindcast data! (BC, dust, and POM wet and dry deposition fields) Contact: flanner@umich.edu
- Comparison with observations (e.g., Doherty et al., 2010)
- Prescribe *observed* snow cover in CLM/CESM
- Include sea-ice forcing (which requires a different model)
- Quantify pre-industrial snow forcing from AeroCom experiments

#### Questions?

• Thanks to Michael, Philip, Stefan, and Mian.

