Model Intercomparison of AeroCom A and B simulations

Christiane Textor, Michael Schulz, Sarah Guibert LSCE, Gif sur Yvette, France **Stefan Kinne** MPI Met, Hamburg, Germany & AeroCom participants

Outline of the talk \triangleright Introduction \triangleright AeroCom B emissions \triangleright Exp A and B + Load + Residence times + Particle sizes \triangleright Sink process analysis \triangleright Spatial distributions \triangleright Conclusions, Outlook

AeroCom

M. Schulz, LSCE, France S. Kinne, MPI HH, Germany

STRATEGY

STRATEGY

BASIS

- Compare an **ensemble** of **global aerosol** models
- **•** Eliminate weak components
- **GOALS** Compare an ensemble of global aerosol models
 GO
 GO Reduce uncertainty in simulated radiative forcing
	- Multi-model evaluation with **observations**
		- From the surface (e.g., AERONET, IMPROVE, EMEP, GAW)
		- Vertical profiles (EARLINET)
		- From satellites (MODIS, AVHHR, TOMS, POLDER, MISR,…)
	- Analyze and improve critical **parameters** and **processes**
	- Experiment A models as they are **17** Experiment B – harmonized sources y 2000 **12** Experiment PRE – harmonized sources y 1750 **9** Experiment IND - indirect effect

http://nansen.ipsl.jussieu.fr/AEROCOM

Exp B emissions

AeroCom Experiment B AeroCom Experiment B

Prescribed emissions:

- 2d/3d fields for dust, sea salt, SO2, SO4, DMS, BC, POM
- Particle sizes

Aerocom B emissions: potential problems problems

- •How are the fields interpolated to the model grid?
- How are the emissions filled into the vertical grid?
- How are the sizes represented in the different schemes?
- Bugs…

• Volcanic emissions height intervals Explosive intended: top+500m \rightarrow top +1500m given: 66% top \rightarrow top

Continuous intended: 66% top \implies top

Exp B: "unified" gobal aerosol emissions

Model d Model diversity iversity of unified emissions in Exp B of unified emissions in Exp B

Comparison between Exp A and B Comparison between Exp A and B Differences in model versions:

- · KYU indirect effect included
- · DLR **DLR coarse mode included, updated water uptake (EQSAM)**

•**Other models: minor changes !**

Exp B: gobal aerosol load [Tg]

global annual averages year 2000 if available

> **dust DUST sea salt sulfate SO4 black carbon particul.organ.matte POM total aerosol I AER**

22

BC

Diversity of emissions and load in Exp A and B

Residence times in Exp B

Residence times in Exp A and B

Effects of modified spatial distributions and particle size distributions.

particle sizes

Mass fraction per size class in Exp A and B

Similar sizes for fine fraction in Exp A and B

Mass fraction per size class in Exp B: DU and SS

DUST SeaSalt

Unified size (?) of emitted particles is not transmitted to load.

Size classesRadius intervals [mum] ≤ 0.5 Coo $0.5 - 1.25$ Sup >1.25

Mass fraction Mass fraction per size class per size class in Exp A and B A and B

DUST SeaSalt Load fraction $f \cdot r$ size class for SS in World Load fraction per size class for DUST in World $80⁸$ Fraction of total [%] Fraction of total [%] $50¹$ $20¹$ and by a family with the up at up and 18 98 98 19 19 19 19 19 19 19 19 19

- Particle size is similar for a given model for both experiments.
- Different representation of sizes in schemes?
- Deficiency of AeroCom diagnostics?

Mass fraction Mass fraction in the fine mode in fine mode in Exp A and B A and B

Important implications for radiative properties!

sink process analysis

Sink process analysis

Definition of a (global mean) removal rate coefficient: $\,$ k $=\frac{1}{\tau}$ $k=\frac{1}{\pi}$

> 1 m=k $\frac{\mathsf{d}\mathsf{m}}{\mathsf{d}\mathsf{t}}$ = τ^{-1} m=k $\,$ m = $-\frac{u}{t} = \tau$

Sink process analysis

The removal rate coefficients of the single processes are:

- additive sedk tur k wet k = k + k, +
- independent from the source strength

Removal rate coefficients of natural species (Exp A)

- \triangleright two thirds are removed by dry deposition
- \triangleright high diversities of the sink rates
- \triangleright high diversity of
	- the contribution of wet deposition
	- the dominant dry deposition pathways

Removal rate Removal rate coefficients coefficients of anthropogenic species anthropogenic species

Sink processes analysis processes analysis

The rates differ between the species:

¾**wet removal rates** increase with the solubility from DU, BC, POM to SO4 and SS.

^¾**dry removal rates** increase with the particle sizes.

^¾**main removal processes** BC, POM to $SO4:$ > 80% wet dep. DU and SS: \sim 66% dry dep.

Why do the removal rates for a given species differ between the models ?

Removal rate Removal rate coefficients coefficients Exp A and B Exp A and B: fine fraction fraction

Results of the two exp's are similar for of a given model.

Removal pathways in Exp A and B: fine fraction fraction

- Relative importance of removal pathways is model-specific.
- Minor effects of spatial distributions.

Wet dep rate coeff. vs . Precipitation Precipitation rate

Wet dep rate is independent from global annual precip rate.

Model diversity of removal rate coefficients

Sink processes analysis processes analysis

Why do the removal rates for a given species differ between models ?

- ¾ Sink processes are model specific
	- •parameterizations (dep pathways)
	- •dispersal
	- precipitation
	- etc…
- \triangleright Spatial distribution of emissions and particle sizes seem to play minor roles.
- ¾ Model diversity of wet and dry dep in Exp A -> Exp B:
	- •SS and DU: decreased: outlier removed
	- •BC, POM and SO4: increased (?)

simulated spatial aerosol distributions

Aerosol Aerosol load in Exp B [mg/m2]

KYU_B Mean: 4.88439E+01 mg/m^2

Longitude

TM5_B2 Mean: 3.55939E+01 mg/m^2

UMI_B Mean: 5.48387E+01 mg/m²

Longitude

MOZGN_B Mean: 8.35481E+01 mg/m^2

UIO_GCM_B Mean: 6.05213E+01 mg/m²

Longitude

DLR_B Mean: 4.23278E+01 mg/m^2

MATCH_B Mean: 7.10702E+01 mg/m^2

UIO_CTM_B Mean: 7.03479E+01 mg/m^2

ARQM_B Mean: 4.54360E+01 mg/m^2

LOA_B Mean: 6.58186E+01 mg/m²

ULAQ_B Mean: 6.24246E+01 mg/m^2

Exp B: Spatial distribution SeaSalt

AROMB

DLRB

GISSB

KYUB

LOAB

MATCHB

MOZGNB

UIOCTMB

UIOGCME

TM5B2

ULAQB

UMIB

Global mean loads differ, but high agreement on spatial distribution !

Exp B: Spatial distribution SeaSalt

Global mean sink rates differ, but spatial distribution coincide!

Exp B: Spatial distribution DUST

Exp B: Spatial distribution DUST

ARQMB

DI RR

GISSB

KYUB

LOAB

MATCHB

MOZGNB

IIOCTMB

UIOGCME

TM5B2

ULAQB

UMIB

Model diversity of spatial distributions of load is due to wet dep !

Exp B: Spatial distribution Spatial distribution SO4

Lower agreement on emissions and load: spatial distr. + total

Spatial distribution Spatial distribution SO4

Lower agreement on emissions and load: spatial distr. + total

Spatial distribution Spatial distribution BC

Spatial distribution Spatial distribution POM

Conclusions

- \triangleright Model diversities and averages for global annual means in Exp A established (submitted to ACP)
- \triangleright Exp B harmonized emissions and initial particle sizes:
	- do not lead to higher agreement in loads,
	- increase model agreement on removal rates of coarse aerosols (outliers removed), coarse aerosols (outliers removed),
	- minor influence on fine aerosols and on aerosol dispersal.

 \triangleright SS: Load and sink processes are spatially consistent. \triangleright DU: Model diversity in load is due to wet dep.

O Internet

ertig

Zonal profiles: emissions and load in Exp A and B

Emission comparison Exp A and B

Exp B: BC and POM smaller

ertig

 0.90

 $=$ ARQMB

 $-$ DLRB

Load Dry Aerosol BC in WORLD

O Internet

 $DRLD$ $\boxed{\bullet}$ an2000 $\boxed{\bullet}$

Contribution Contribution of wet deposition deposition to total to total deposition deposition

The aerosol aerosol life cycle

rate & distribution

and **transport** provided by the global model

Removal rate Removal rate vs vertical dispersal vs vertical dispersal

Faster sink rate for BC than for POM **?**

