Vertical distribution of aerosols and effects on radiation for different convective parameterisations in CCM-OSLO

Øyvind Seland

Department of Geosciences, University of Oslo, Norway

Acknowledgements

- r. Trond Iversen, Alf Kirkevåg and Jon Egill Kristjansson at the Dep. of Geosciences, UiO
- $\mathcal{L}_{\mathcal{A}}$ This work is funded by the Norwegian research council through the project AerOzClim and through a grant of computing time.

Outline

- Why is vertical distribution important
- Overview of CCM-Oslo
- ■ Testing parameterisations of convective transport and scavenging
	- □ Changes in aerosol
	- □ Changes in direct and indirect effect

CCM-Oslo

- •**CCM3:T42L18, semi-Lagrangian,**
- •**Mass-flux deep-convection** (Zhang and McFarlane, 1995)
- •**SW-radiation: 2-stream delta-Eddington**
- •**18 spectral intervals, 11 bands for aerosol optics,**
- •**LW-absorption by O3, H20, CO2, O2, cloud droplets, aerosols**
- • **Parameterisation of transport and scavenging in deep convection**
	- \bullet **Standard: All tracers transported by deep convection. In-cloud scavenging parameterised by assuming all of the aerosol mass is subject to scavenging below level of maximum precipitation creation. Aerosols in updrafts and downdrafts completely mixed.**

CCM-Oslo

- Mechanistic treatment of the aerosol by **production pathways**
- Calculates transport, chemistry and **deposition of DMS, SO 2, SO 4, BC and POM**
- Aerocom **B** emissions
- **Production pathways**
	- \Box **Gas-phase production**
	- **Aqueous phase production**
	- **Condensation**
	- **Coagulation**

Parameterisation of transport and scavenging in deep convection

- Standard: All tracers transported by deep **convection. In-cloud scavenging parameterised by assuming all of the aerosol mass is subject to scavenging below level of maximum precipitation creation. Aerosols in updrafts and downdrafts completely mixed.**
- No mixing between updraft and downdraft
- P. **In situ scavenging only but full mixing of updraft and downdraft**
- **In situ scavenging only and no mixing**
- No convective transport

Why test convection

SO2, Guam SO4, Guam

Vertical distribution sulphate

Vertical distribution BC

Vertical distribution POM

Column burdens (mg S/C /m2)

AOD550 No mixing ptical depths AOD550 Plain wet

90N

60N

Total – preindustrial

 $-1 - 0.5$

 -5

 10^{-}

 $\overline{\rightarrow}$

 $\overline{0.5}$

ত

 $\overline{\mathbf{5}}$

 $\overline{10}$

 $\overline{2}$

Forcing C+S ground (W/m²) No tracer conv. tran.

Total – preindustrial

Forcing C+S TOA (W/m²) Plain wet

 $\frac{1}{2}$

 $-10 - 5$

 -1 -0.5 0

 $\overline{0.5}$

DRF due to anthropogenic S+C(W/m2)

Cloud droplet radius as seen from space

2D droplet radius total-preind No mixing

2D droplet radius total-preind No tracer conv. tran.

-0.5

 0.5

 0.5

Change in SWCF due to anthropogenic S+C (1. indirect effect) (W/m2)

Conclusions

- Total aerosol burden very sensitive to parameterisation of convective transport
- Vertical distribution of aerosols, in particular absorbing aerosols above or below clouds may change the sign of the direct effect
- The in-direct effect is mostly affected by the amount of aerosols in the lower part of the atmosphere, so a high column burden does not necessarily mean a stronger in-direct effect

Vertical distribution POM

Why test convection

SO2, Guam SO2, Guam

Column burden sulphate

 0.1

 0.2

 $\overline{0.5}$

 0.2

Column burdens (mg S/C /m2)

