Vertical distribution of aerosols and effects on radiation for different convective parameterisations in CCM-OSLO

Øyvind Seland

Department of Geosciences, University of Oslo, Norway

Acknowledgements

- Trond Iversen, Alf Kirkevåg and Jon Egill Kristjansson at the Dep. of Geosciences, UiO
- This work is funded by the Norwegian research council through the project AerOzClim and through a grant of computing time.

Outline

- Why is vertical distribution important
- Overview of CCM-Oslo
- Testing parameterisations of convective transport and scavenging
 - Changes in aerosol
 - Changes in direct and indirect effect

CCM-Oslo

- CCM3:T42L18, semi-Lagrangian,
- Mass-flux deep-convection (Zhang and McFarlane, 1995)
- SW-radiation: 2-stream delta-Eddington
- 18 spectral intervals, 11 bands for aerosol optics,
- LW-absorption by O3, H20, CO2, O2, cloud droplets, aerosols
- Parameterisation of transport and scavenging in deep convection
 - Standard: All tracers transported by deep convection. In-cloud scavenging parameterised by assuming all of the aerosol mass is subject to scavenging below level of maximum precipitation creation. Aerosols in updrafts and downdrafts completely mixed.

CCM-Oslo

- Mechanistic treatment of the aerosol by production pathways
- Calculates transport, chemistry and deposition of DMS, SO₂, SO₄, BC and POM
- Aerocom B emissions
- Production pathways
 - Gas-phase production
 - Aqueous phase production
 - Condensation
 - Coagulation

Parameterisation of transport and scavenging in deep convection

- Standard: All tracers transported by deep convection. In-cloud scavenging parameterised by assuming all of the aerosol mass is subject to scavenging below level of maximum precipitation creation. Aerosols in updrafts and downdrafts completely mixed.
- No mixing between updraft and downdraft
- In situ scavenging only but full mixing of updraft and downdraft
- In situ scavenging only and no mixing
- No convective transport

Why test convection

SO2, Guam

SO4, Guam

Vertical distribution sulphate

Vertical distribution BC

Vertical distribution POM

Column burdens (mg S/C /m2)

	SO2	SO4	BC	POM
TOT; Standard	0.71	0.99	0.22	1.30
TOT; No mixing	0.77	1.35	0.28	1.70
TOT; Plain scav.	0.88	4.56	0.70	5.05
TOT; No conv. transport	0.76	1.71	0.30	2.10

AOD550 No mixing Optical depths AOD550 Plain wet

AOD550 No tracer conv. tran.

Total – preindustrial

Forcing C+S ground (W/m²) Plain wet

-2

-1

10 -5

-0.5

Ò

0.5

10

Forcing C+S ground (W/m^2) No tracer conv. tran.

Total – preindustrial

Forcing C+S TOA (W/m²) Plain wet

90N

60N

DRF due to anthropogenic S+C(W/m2)

	Standard	No mixing	Plain scav	No conv. transport
ΤΟΑ	-0.01	0.04	0.06	-0.20
Ground	-0.83	-1.12	-2.53	-1.31

Cloud droplet radius as seen from space

2D droplet radius total-preind No mixing

2D droplet radius total-preind No tracer conv. tran.

-ò.5

0.5

Change in SWCF due to anthropogenic S+C (1. indirect effect) (W/m2)

	Standard	No mixing	Plain scav	No conv. transport
ΤΟΑ	-1.06	-1.09	-1.08	-1.16

Conclusions

- Total aerosol burden very sensitive to parameterisation of convective transport
- Vertical distribution of aerosols, in particular absorbing aerosols above or below clouds may change the sign of the direct effect
- The in-direct effect is mostly affected by the amount of aerosols in the lower part of the atmosphere, so a high column burden does not necessarily mean a stronger in-direct effect

Vertical distribution POM

Why test convection

SO2, Guam

SO4, Guam

Column burden sulphate

Column burdens (mg S/C /m2)

	SO2	SO4	BC	POM
PRE; Standard	0.28	0.42	0.036	0.64
PRE; No mixing	0.31	0.55	0.043	0.85
PRE; Plain scav.	0.38	2.24	0.14	2.44
PRE; No conv. transport	0.30	0.76	0.063	0.99