Vertical Profiles of Aerosol Optical Properties Over a Continental US site

<u>Anne Jefferson</u> Patrick Sheridan, Betsy Andrews and John Ogren

NOAA Climate Monitoring and Diagnostics Laboratory Boulder, Colorado, USA

http://www.cmdl.noaa.gov/aero

Questions on surface vs vertical in-situ measurements

•How representative are the optical properties of surface aerosols to the column properties?

- •What is the variability of the aerosol optical properties above and below the mixed layer?
- •Under what circumstances can the surface data be used to validate satellite data?
- •How well can short term aircraft measurements characterize the regional and seasonal variability of aerosol properties?

Observations of elevated layers with high aerosol extinction over the Indian Ocean

NOAA/CMDL In-situ Aerosol Profiling

- Information on aerosol properties aloft is scarce, satellites and surface stations give limited data.
- Light airplanes can be used to monitor vertical profiles of key aerosol properties at modest cost.
- Objectives:
 - obtain aerosol climatology aloft
 - determine relevance of surface climatology
- Summary: Cessna 172 (4-seat), profiles to 3.7 km asl, aerosol light scattering and absorption, automated operation.

DOE/ARM funding for Oklahoma project, >500 flights since 3/2000
NOAA funding starting 2003 to begin sampling over another site with an enhanced payload. Start flying fall 2005.

Sampling System

Vertical profiles of aerosol properties for an elevated aerosol layer

www.cmdl.noaa.gov/aero/net/iap/profiles.html

Long-range transport of smoke aerosol from Los Alamos to Oklahoma, May 2000

Comparison with AOD measurements

Values are adjusted to ambient T,P & RH, for λ = 0.55 µm, and Dp < 1 µm, for 32 flights between March 28 and September 1, 2000. Additional adjustments are made for supermicron and stratospheric aerosol.

Seasonal Variation of Average Aerosol Profiles over Oklahoma: Aerosol Amount

Notes: Results are for 324 profiles from March, 2000 – March, 2003 over the DOE/ARM site. Aerosol radiative properties reported at 550 nm wavelength, RH<40%, and particle diameter below 1 μm.

Seasonal Variation of Average Aerosol Profiles over Oklahoma: Aerosol Character

Notes: Results are for 324 profiles from March, 2000 – March, 2003 over the DOE/ARM site. Aerosol radiative properties reported at 550 nm wavelength, RH<40%, and particle diameter below 1 μm.

How well do surface properties reflect those of the column?

- Delle Monache et al. (*JGR 2004*) looked at the ratio of the aircraft/surface aerosol properties for 10 days with a "well-mixed" atmospheric boundary layer of constant potential temperature and a capped inversion.
- He found a good correlation with surface and aircraft measurements in the mixed layer and a poor correlation above the mixed layer.
- aerosol single scattering albedo declines above the mixed layer

ratios of aircraft/surface aerosol optical properties with altitude

Delle Monache et al, JGR 2004. Bars represent 1 standard deviation of the data.

Values are adjusted to STP and at RH < 40%, for λ = 0.55 µm and Dp < 1 µm, for 339 flights between March 25, 2000 and February 22, 2003.

NOAA Airborne Aerosol Observatory

Chemical Properties

- Major ions
 - PILS sampler
 - analysis by IC
- Trace elements and total mass
 - DRUM sampler
 - analysis by PIXE,
 β-attenuation
- Gases (O3, carbon-cycle flasks)

Microphysical Properties

- Number concentration **D > 10 nm**
- Size distribution
 20 < D < 500 nm

Radiative Properties

- Light scattering. backscattering, and absorption **3 wavelengths, no size cut, 40% RH**
- Scattering vs. RH
 1 wavelength,
 1 μm size cut,
 40%, 65%, 85% RH

NOAA Airborne Aerosol Observatory

- Objective: Obtain a climatology of aerosol properties aloft for testing models and satellite retrievals
- Stair-step flight patterns from surface to 12k' (occasionally 18k'), 2-3 flights per week
- Underfly satellites when possible (A-Train)
 - requires clear sky and overpass nearby
- Most profiles in vicinity of CMDL aerosol monitoring station near Bondville, IL
 - possibly relocate to Trinidad Head, CA for springtime maximum in transport from Asia

- Aerosol chemistry
 - major ions, trace elements, gravimetric mass
- Aerosol size distribution, number concentration
- Aerosol optics
 - light scattering, absorption, hygroscopic growth
- Gases
 - continuous O_3 , carbon-cycle flasks