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Motivation	&	Objectives
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qDust	deposition	is	believed	to	play	important	roles	in	
ocean	biogeochemical	cycles,	carbon	sequestrations,	
and	climate	change.
Ø direct	fertilizing	effect—providing	essential	nutrients	Fe,	P	

etc.
Ø indirect	fertilizing	effect—promoting	nitrogen	fixation
Ø ballasting	effect—aggregating	&	sinking	particulate	organic	

carbon	(POC)

qObservations	of	dust	deposition	are	rare	and	model	
simulations	are	highly	uncertain.

qObjectives:	(1)	to	estimate	the	dust	deposition	into	
Atlantic	Ocean	from	satellite	measurements	of	aerosol	
3-D	distributions; (2) to	evaluate	model	simulations.

NOG



A-Train	(+other)	provides	several	capabilities	of	
observing	global	dust	from	space

• Dust,	generally	large	and	non-spherical	particles,	can	be	separated	from	other	
types	based	on	A-Train(+other)	measurements.

• A	synergy	of	these	measurements	can	characterize	the	dust	transport	in	3-D	
(passive	+	active)
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Sensor Technique Observables
CALIOP
CATS

polarization	lidar Vert.	profiles	&	particle	
shape

MODIS multiple wavelengths AOD	&	particle	size

MISR multi-angle,	multiple	
wavelengths AOD	&	particle	shape

IASI	
AIRS

thermal	IR AOD	at	10um	&	height
info

POLDER
multi-angle,	multiple	
wavelengths,	
polarization

AOD	&	particle	shape

*	POLDER	GRASP	data	will	be	analyzed	in	near	future



1. Aerosol 
extinction/backscatter 
profile from CALIOP  

2. Dust extinction 
profile

3. Profile of Dust 
Mass Concentration 

4. Dust Mass Flux

Step-by-step Estimation of Dust Transport & Deposition

Extinction = Mass Conc. * MEE

F = m(z)u(z)dz∫

Dust particles are large in size and non-
spherical in shape, so large depolarization 
ratio. 

MERRA Reanalysis 
wind 

Yu et al., Remote Sens. Environ., 2015 & Yu et al., Geophys. Res. Lett., 2015

5. “Mass Balance”        Dust deposition

zonal

No leak from top
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DOD derived from MODIS, 
MISR, IASI is distributed using 
the CALIOP dust extinction 
profile



Dust	Optical	Depth	Derived	from	Satellites
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MODIS

DOD	=	
[AOD(fc-f)-AODm(fc-fm)]

/(fc-fd)
f	– fine-mode	fraction
d	– dust;					m	– marine;	
c	– combustion

MISR

DOD	=	AOD*fnon-sph

fnon-sph:	non-spherical	
fraction	from	multi-
angle	observations	

IASI	(x2)

DOD	=	AOD	10um

thermal	infrared	
channels	only	
sensitive	to	elevated	
coarse	particles.	

CALIOP

DOD	=	AOD*fdSEPARATING DUST FROM NON-DUST AEROSOL 

"  Lower-bound Dust Fraction (LDF):  δd = 0.30, δnd = 0.07 

"  Upper-bound Dust Fraction (UDF):  δd = 0.20, δnd = 0.02 
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! 8!

includes columns with the presence of single-layer, low-level cloud with a top lower than 165!

4 km.  166!

 167!

For each aerosol profile, we derive the ratio of dust to total extinction (fd) at each altitude 168!

by using the CALIOP observed particulate depolarization ratio (δ) and the a priori 169!

knowledge of depolarization ratios of dust (δd) and non-dust (δnd) as follows [Hayasaka 170!

et al., 2007]:  171!

!!! = (!!!!")(!!!!)
(!!!)(!!!!!")

               (1a) 172!

!! =
!!!!!

!!!!! + !!"(1− !!!)
!!!!!!!!!!(1!) 

Sd and Snd is extinction-to-backscatter ratio for dust and non-dust aerosol, respectively. 173!

The value of fd is set at 1 if fd > 1 and at 0 if fd < 0. In this study, δd and δnd are determined 174!

based on available observations in the region and some considerations of their variability. 175!

We use two sets of δd and δnd values, namely δd = 0.30 and δnd = 0.07 vs δd = 0.20 and δnd 176!

= 0.02, to encompass the majority of observations and natural variability. Although 177!

marine aerosol and urban haze are highly hydroscopic and generally have very low 178!

depolarization ratio, some types of non-dust aerosols may have non-negligible 179!

depolarization ratio. For example, biomass-burning smoke [Fiebig et al., 2002; Burton et 180!

al., 2012], sea-salt crystals and ammonium sulfate crystals [Sakai et al., 2010] can have a 181!

depolarization ratio of about 0.07.  Given these observations, we use 0.02 and 0.07 as 182!

lower and upper bound for δnd in this study. Mineral dust has much higher depolarization 183!

ratio than non-dust aerosols. Observations off the coast of North Africa show that 184!

Saharan dust has a depolarization of about 0.3 [Freudenthaler et al., 2009; Ansmann et 185!

δnd δd  
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Satellite-Based	Estimates	of	Dust	Deposition	(Tg)

Map data ©2015 Google, INEGI 500 mi

Google Maps

Google Maps https://www.google.com/maps/@19.9628296,-45.650463,4z
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IASI	has	no	data	before	July	2007

R CALIOP MODIS MISR IASI
2007-2014 -0.67 -0.65 -0.63 -0.44
2007-2013 -0.86 -0.96 -0.87 -0.85

q Negative	correlation	with	prior-
year	Sahel	rainfall	Index	(SPI).	

q 2014	is	kind	of	outlier.



Interannual Variations	of	Dust	Deposition	[2]

R CALIOP MODIS MISR IASI
2007-2014 -0.63 -0.77 -0.76 -0.84
2007-2013 -0.89 -0.94 -0.94 -0.96

q Tighter	negative	correlation	between	DOD	
and	prior-year	SPI.
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Two	MERRA2	estimates	of	dust	deposition
Ø CAL– based	on	para.	of	dry	&	wet	removals	(mass	imbalance)
Ø DIV – the	“mass	balance”	method	(similar	to	satellite	estimates)

Data	assimilation	doesn’t constrain	the	deposition,	but	could	even	
exacerbate	the	bias	of	dust	deposition	(due	to	imperfect	
representations	of	dry	and	wet	removals)

Dust	Deposition:	Satellites	vs	MERRA2
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Dust	Loss	Frequency	(LF)	from	Satellites
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Dust	Loss	Frequency (LF)	(1/day) =	
[Dust	Deposition	Flux	Rate]	(g/m2/day)	
÷ [Dust	Mass	Loading=DOD/MEE]	(g/m2)

*	LF	is	not	sensitive	to	dust	MEE
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Satellites	versus	Models	

AeroCom-2	Models	
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Models’	loss	frequency	is	more	than	a	factor	of	2	greater	
than	that	derived	from	the	satellite	observations.

0.056	~	0.086	d-1

0.16	~	0.42	d-1



Summary
We have used 2007-2014 observations from CALIOP, 
MODIS, MUSR, and IASI to quantify dust deposition into 
tropical Atlantic Ocean and Caribbean Basin.

Ø The 8-year average dust deposition is 90 ~117 Tg
(North Atlantic) and 22 ~ 40 Tg (Caribbean Basin).

Ø The dust deposition shows negative correlation (R = -
0.85 ~ -0.96) with prior-year Sahel rainfall anomaly 
(e.g., SPI) over 2007-2013. But the correlation was 
substantially degraded by 2014 when the easterly was 
substantially weakened (further investigation needed).

Ø We estimated the regional dust loss frequency (LF) of 
0.056 ~ 0.086 d-1 from the satellite observations (not 
sensitive to MEE), which is at least a factor of 2 smaller 
than model simulations of 0.16 ~ 0.42 d-1.
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Discussion

Michael	Schulz	offered	some	guidance	on	dust	
discussion:

• What	is	the	recommendation	for	the	dust	
modelling?	

• For	evaluating	the	models	?	

• What	should	global	aerosol	models	be	able	to	
simulate	dust	properly?	

• Any	recommendation	how	to	parameterize?	

• Good	examples?
15



Discussion:	
What	can	we	do	to	improve	dust	

modeling?
• Proposed	Activity: Use	recently	available	data	sets	to	

comprehensively	evaluate	model	simulations	of	trans-
Atlantic	dust	transport,	deposition,	and	direct	effect	on	SW	
and	LW	radiation.

– Assimilation	of	satellite	observations	is	a	powerful	tool	to	
constrain	dust	loading	in	the	atmosphere;	but	it	doesn’t	
necessarily	improve	model	representations	of	dust	processes.

– Previous	AeroCom dust	activities	have	largely	focused	on	global	
perspective.	

– More	datasets	are	emerging	over	Saharan	desert	and	the		trans-
Atlantic	transit.

16



• Ground-based	networks
• Satellites

– Emissions	inferred	from	PARASOL
– Dust	optical	depth	(0.55um	&	10	um)
– Dust	vertical	profiles
– Dust	transport	&	deposition	(including	loss	frequency)
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Emerging	Datasets	[1]:
Satellites	and	Ground-based	Networks
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Emerging	Datasets	[2]:	Field	Campaigns
Dust	Deposition	from	DUSTTRAFFIC
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q PI:	Jan-Berend Stuut

q Multi-year	project	(since	late	2012)

q Sediment-trap	sampling	stations	M1-
4	,	~1200m	deep,	every	8-16	days

q Biogenic	constituents	are	chemically	
removed

Courtesy	of	Michelle	van	der	Does	
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SALTRACE: The Saharan Aerosol 
Long-Range Transport and 
Aerosol–Cloud-interaction 
Experiment  (2013-2014)

Emerging	Datasets	[3]:	Field	Campaigns
FENNEC	&	SALTRACE

particles, which fall the same distance over any time from
20! 5 h (d = 30 mm) to several days (d = 4 mm). Despite this,
coarse mode particles are not completely depleted by either
the aged or SAL categories. Accumulation mode particles
(d< 3.5 mm, to coincide with PCASP measurements) are
deposited on a time scale lasting tens of days or more,
suggesting a lesser role for deposition, even for the Eastern
Atlantic SAL profiles.

[18] In addition to deposition, particles are also subject
to a decrease in concentration via dispersion. According
to Gaussian plume theory, plume area will increase
proportionally to time if the lower and upper edges are
bounded by the ground surface and a temperature inversion
at the top of the SABL [Dacre et al., 2013]. Therefore, for
the transition from aged to SAL, mean time scales are
40 to 80 h, so number concentrations could be expected to

Figure 2. (a) Column mean normalized size distributions fresh desert (red, beneath 5.5 km), aged desert (green), and SAL
(blue, between 1.5 and 5.5 km representing the SAL). (b) Normalized fractional loss in number size distribution between
fresh desert and aged desert (red) and aged desert to SAL (green). Error bars represent standard errors.

Figure 3. Optical properties ((a) SSA, (b) g, (c) kext, all at 550 nm) calculated from size distributions, for fresh desert (red),
aged desert (green), and SAL (blue) categories as a function of measurement altitude. Solid lines show means, dashed lines
and shading indicate 10th and 90th percentiles, respectively. Ocean (blue) lines are not shown beneath 1 km due to boundary
layer contamination of non-dust aerosols, and desert data is not shown where fewer than three profiles are present.

RYDER ET AL.: IMPACTS OF TRANSPORT ON SAHARAN DUST

2436

FENNEC Campaign
(2010)

Ryder	et	al.,		Geophys.	Res.	Lett., 2013.

Weinzierl et	al.,		BAMS, 2017


