AEROCOM meeting, Ocober 9, 2017, Helsinki

Assessment of clear sky solar
radiative fluxes in climate models
using surface observations

('

Martin Wild

ETH Zurich, Switzerland

Acknowlegements to Maria Hakuba, Doris Folini, Veronica Manara, Chuck Long,
Arturo Sanchez Lorenzo, Alejandro Sanchez Romero , Pierre Nabat

e
LT
i
=
=
=
— |
o
ﬂ i
z:.
<
=
(o
L
I
=18
WM
o
=
<
&'
o
ES
EL]
1
=

&

=



Presenter
Presentation Notes
In my talk I would like to present  some work we did using radiation observations and climate modeels, particularly looking at clear sky fluxes  which may be of some  use to diagnose  AEROCM simulatios aerosol aspects in model simulations
Attempts we made to estimate and analyse 

In previous studies we were worked on the estimation of the componets of the gloval energy blance, using direct obs. More recently we started to fo
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Presentation Notes
In a previoous study we made an attempt to quantify the global mean energy balance to the extent possible based on information contained in the direct observations for surface and space.
We westimated the TOA fluxes from CERES, satellte data, and the surface fluxes from a combination of surface station estimates and CMIP5 models. 
And withs a latent heat flux that is consistent with the gloal mean precipitation estimates within the errror bars and can reconcile apparent discrepancies between the global energy and water cycle.s
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In a previoous study we made an attempt to quantify the global mean energy balance to the extent possible based on information contained in the direct observations for surface and space.
We westimated the TOA fluxes from CERES, satellte data, and the surface fluxes from a combination of surface station estimates and CMIP5 models. 
And withs a latent heat flux that is consistent with the gloal mean precipitation estimates within the errror bars and can reconcile apparent discrepancies between the global energy and water cycle.s
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In a previoous study we made an attempt to quantify the global mean energy balance to the extent possible based on information contained in the direct observations for surface and space.
We westimated the TOA fluxes from CERES, satellte data, and the surface fluxes from a combination of surface station estimates and CMIP5 models. 
And withs a latent heat flux that is consistent with the gloal mean precipitation estimates within the errror bars and can reconcile apparent discrepancies between the global energy and water cycle.s
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More recently we started to look specifically into clear sky fluxes, which may be of interests as well for  aerosol diagostics

In a previoous study we made an attempt to quantify the global mean energy balance to the extent possible based on information contained in the direct observations for surface and space.
We westimated the TOA fluxes from CERES, satellte data, and the surface fluxes from a combination of surface station estimates and CMIP5 models. 
And withs a latent heat flux that is consistent with the gloal mean precipitation estimates within the errror bars and can reconcile apparent discrepancies between the global energy and water cycle.s


lobal mean shortwave clear sky budgets in CMIP5 GCMs
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Here I show global mean fluxes solar clear sky fluxes from almost 40 different GCMsCMIP5
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Presenter
Presentation Notes
Here I shoe global mean fluxes solar clear sky fluxes from CMIP5
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Over the past 15 years we established at ETH two database to reduce these uncertainties.


'Estimating clear-sky climatologies at BSRN sites

Clear sky estimates making use of the high temporal resolution of the
BSRN records (minute data)

SW clear sky detection algorithm

Long and Ackerman (2002) JGR

Takes into account magnitude and temporal variability of diffuse and total
downward solar radiation

209 300 100 3 B 10 00 o0 200

Figure 3: Diurnal cycles of downwelling total (global) SW (black) and clear-sky fits (red)
at Lindenberg on 5th of May 2006 (left) and 6th of May (right).
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Algorithm implemented at ETH Zurich by Maria Hakuba
with support from Chuck Long
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Presenter
Presentation Notes
In previous studies we derived new estimates for the magnitude of the components of the global, land and ocean mean energy balance (Wild et al. 2013 / 2015, Clim. Dyn. 40/44). Here we establish complementary estimates for the global mean energy fluxes under cloud free conditions. The energy fluxes in and out of the climate system under cloud free conditions at the Top of Atmosphere (TOA) can be determinend with high accuracy from satellite-based measurements (CERES EBAF). For the estimation of the global mean clear-sky radiative fluxes at the Earth’s surface we follow the approach presented in Wild et al. (2013 / 2015), based on a combination of more than 40 state of the art global climate models from CMIP5 and their biases compared to a comprehensive set of high quality surface observations from the Baseline Surface Radiation Network (BSRN). Thereby the clear sky radiative flux biases in the various models are lineraly related to their respective global means. The associated clear sky reference climatologies at the BSRN sites have been composed based on Long and Ackermann (2000) and Hakuba et al. (2015). From the linear regression we inferred a best estimate (with zero bias against the surface observations) of 249 Wm-2 for the global mean insolation at the surface under cloud free conditions, and a corresponding surface absorption of 215 Wm-2, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the TOA under cloud free skies from CERES-EBAF of 287 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 coincide with our earlier estimate for this quantity in Wild et al. (2006, JGR) based on older models and much fewer direct observations, suggesting that this estimate is fairly robust. We intend to pursue a similar approach for the estimation of the thermal fluxes of the cloud-free global mean energy balance and for the global mean cloud effects.
 
Alt:
 
A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995 J. Climate, Wild et al. 2006, JGR). This overestimation reduced over time over time in consecutive model generations due to higher atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation CMIP5 against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies have been composed based on the Long and Ackermann (2000, JGR) clear sky detection algorithm (Hakuba et al. 2015). Overall, the overestimation of clear sky insolation in the CMIP5 models now is merely 1 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006 JGR). Still a considerable spread in the individual model biases is apparent, ranging from -3 Wm-2 to 9 Wm-2 averaged over 53 BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby  the flux biases in the various models are lineraly related  to their respective global means. A best estimate can be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 249 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 215 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 287 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 coincide with our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This incates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. We intend to pursue a similar approach for the estimation of the thermal fluxes of the cloud-free global mean energy balance. 
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Best estimates for global mean clear sky fluxes

Surface SW down clear sky
"g, GCM global means versus their biases averaged over BSRN sites
|'+.|.I:' . 260 T ] — T T ] — E— [T T T T [T
o i : individual CMIP5 model
'-E - Corr. coeff.: 0.94 - indmcua mode
= B |
d‘-..- 1%
| 3 o255 -
4 O :
— E ]
.S
~ v
L % -
8 O 250 - R
v =
=B T
Q
=
<< B :
= e
o X 245 onr oKy
o s E
= R &
= : o
_ N
E 240 1 | | 1 | 1 [ 1 1 1 | 1
a = -5 0 5 10

model biases at observation sites (Wm-2)


Presenter
Presentation Notes
WE did a similar analyis for the downward longwave radiation
So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.



Best estimates for global mean clear sky fluxes

Surface SW down clear sky
GCM global means versus their biases averaged over BSRN sites
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WE did a similar analyis for the downward longwave radiation
So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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WE did a similar analyis for the downward longwave radiation
So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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The TOA fluxes can be determined  straightofreward from the CERES EBAF dataset

So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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The TOA fluxes can be determined  straightofreward from the CERES EBAF dataset

So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.
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IK would like to start with thederivation of the land mean budget


So we compared the downward thermal radiation of various CMIP5 models against the surface observations, and related their biases  to their global mean estimates.
So on this figure every cross is one model, with its global mean downward thermal radiation in the vertical, and its biases against surface observations on the horizontal. We can see that the lower the global mean value of a model, the stronger the underestimation compared to the observations. So we can make a linear regression, and take the point on the line which corresponds to a zero bias. This gives us a best  estimate of 342 Wm-2 for the downward thermal radiation.



Temporal changes
In clear sky solar radiation




Composite solar clear sky BSRN time series

Clear-sky surface solar radiation composite series

Slope: 0.15 Stderror: 0.02
Mumber of Series. 35
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Composite from 35 longest BSRN records




Clear sky trends in non-BSRN records

Iran
Clear and all sky composite from 9 sites in Iran 1998-2015

composite anomalies

Rs anomalies

101 — All sky
----- Clear sky

_20-I I | I I I | I I
1998 2000 2002 2004 2006 2008 2010 2012 2014

Year

« Based on daily radiation data
e clear sky identification using daily synop cloud information

Jahani, Dinpashoh, Wild 2017

Jahani B., Dinpashoh Y., Wild, M. 2017: Dimming in Iran since the 2000s and the potential underlying causes. Int. J. Climatol.



Changes in clear sky radiation further back in time

Surface solar radiationin Italy 1959-2013
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[nfi i Daily data: Clear sky detection using synop cloud information

Manara, V., Brunetti, M., Celozzi, A., Maugeri, M., Sanchez-Lorenzo, A., and Wild, M., 2016: Detection of dimming/brightening in Italy from
homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959-2013), Atmos. Chem. Phys.,16, 11145-11161,




Changes in clear sky radiation further back in time

Conversion of sunshine duration

60

&
=

20

Clear sky surface solar radiation in Switzerland back to 1930s
iInferred from Sunshine Duration records
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Clear sky variation of converted sunshine duration
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Sanchez-Lorenzo, A., and Wild, M., 2012: Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century,
Atmos. Chem. Phys., 12, 8635-8644,



Reconstruction of AOD from Sunshine duration

Reconstruction of AOD from SD

Correlation between clear sky Sunshine Duration
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Brightening in a regional climate model

« fully coupled Regional Climate System Model CNRM-RCSM4,
driven by the ERA-Interim, with/without time-varying aerosols

» includes aerosols through monthly AOD climatologies and simulates
direct, semi-direct and first indirect radiative forcings.

a) c) SSR over Europe

Brightening

| over Europe
(1980 - 2012)
realistically
captured

| 1 1 I | |
1980 1985 1980 1995 2000 2005 2010
Time (years)

I OBS W TRANS [) REF [ ERA-Interim

 Aerosol changes FORIEIG
explain 81% of the
brightening 1980-2012

* mostly through direct
aerosol effect

« Improves simulated W demadem
warming over Europe  EEEEEIRRN [ [ [ MR
-10 —b -2 2 6 10

Nabat, P., S. Somot, M. Mallet, A. Sanchez-Lorenzo, M. Wild (2014), Contribution of Nabat et al., 2014 GRL
anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980, GRL 41
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Figure 1. Evaluation of all-sky downward surface solar radiation (SSR) trends. Comparison of annual mean trends in
Wm−2 decade−1 for the (a) REF and (b) TRANS simulations over the period 1980–2009. Homogeneous observations
from the Global Energy Balance Archive (GEBA) and Spanish network have been added in colored points; AOD trends
(decade−1 ) are indicated by the contour lines in Figure 1b; (c) SSR annual mean series averaged over the locations of
the stations (solid lines) for the REF (blue) and TRANS (red) simulations, ERA-Interim (green), and observations (average
over all stations) shown as solid black line. SSR annual mean series averaged over entire Europe domain (EUR, defined in
Figure 1a) are shown as dotted lines for REF, TRANS, and ERA-Interim. (d) SSR trends averaged over the locations of the
stations (bars) contained in different domains defined in Figure 1a (EUR = Europe, CEN = Central Europe, SOU = South
Europe, WES = Western Europe, and POV = Po Valley) for the period 1980–2009 and over these whole domains for the
period 1980–2012 (black crosses) for the observations, REF and TRANS simulations, and ERA-Interim.

Two simulations, TRANS and REF, respectively, with and without time-varying AOD over the period
1980–2012, have been carried out using CNRM-RCSM4 driven by the ERA-Interim reanalysis

Simulations have been performed with the fully coupled Regional Climate System Model from
M.t.o-France/CNRM named CNRM-RCSM4 [Nabat et al., 2014], including a regional representation of
the atmosphere (ALADIN-Climate, 50 km resolution), the land surface (ISBA, 50 km resolution), the ocean
(NEMOMED8, 10 km resolution), and the river (TRIP, 50 km resolution) components. Aerosols (five types:
sulfate, black carbon, organic matter, desert dust, and sea salt) are included through monthly interannual
AOD climatologies [Nabat et al., 2013]. This data set has been built from both satellite-derived (for the total
AOD) and model-simulated (for the speciation between the aerosol types) products, in order to obtain the
best estimate of the aerosol forcing. More details are available in Nabat et al. [2013].

 Abstract AEROSOL CLIMATOLOGY. Since the 1980s several spaceborne sensors have
been used to retrieve the aerosol optical depth (AOD) over
the Mediterranean region. In parallel, AOD climatologies
coming from different numerical model simulations are now
also available, permitting to distinguish the contribution
of several aerosol types to the total AOD. In this work,
we perform a comparative analysis of this unique multiyear
database in terms of total AOD and of its apportionment
by the five main aerosol types (soil dust, seasalt,
sulfate, black and organic carbon). We use 9 different
satellite-derived monthly AOD products: NOAA/AVHRR,
SeaWiFS (2 products), TERRA/MISR, TERRA/MODIS,
AQUA/MODIS, ENVISAT/MERIS, PARASOL/POLDER
and MSG/SEVIRI, as well as 3 more historical datasets:
NIMBUS7/CZCS, TOMS (onboard NIMBUS7 and Earth-
Probe) and METEOSAT/MVIRI. Monthly model datasets include
the aerosol climatology from Tegen et al. (1997), the
climate-chemistry models LMDz-OR-INCA and RegCM-4,
the multi-model mean coming from the ACCMIP exercise,
and the reanalyses GEMS and MACC. Ground-based Level-
2 AERONET AOD observations from 47 stations around the
basin are used here to evaluate the model and satellite data.
The sensor MODIS (on AQUA and TERRA) has the best average
AOD scores over this region, showing a relevant spatiotemporal
variability and highlighting high dust loads over
Northern Africa and the sea (spring and summer), and sulfate
aerosols over continental Europe (summer). The comparison
also shows limitations of certain datasets (especially MERIS
and SeaWiFS standard products). Models reproduce the main
patterns of the AOD variability over the basin. The MACC
 reanalysis is the closest to AERONET data, but appears to
underestimate dust over Northern Africa, where RegCM-4 is
found closer to MODIS thanks to its interactive scheme for
dust emissions. The vertical dimension is also investigated
using the CALIOP instrument. This study confirms differences
of vertical distribution between dust aerosols showing
a large vertical spread, and other continental and marine
aerosols which are confined in the boundary layer. From this
compilation, we propose a 4-D blended product from model
and satellite data, consisting in monthly time series of 3-D
aerosol distribution at a 50 km horizontal resolution over the
Euro-Mediterranean marine and continental region for the
2003–2009 period. The product is based on the total AOD
from AQUA/MODIS, apportioned into sulfates, black and
organic carbon from the MACC reanalysis, and into dust and
sea-salt aerosols from RegCM-4 simulations, which are distributed
vertically based on CALIOP climatology.We extend
the 2003–2009 reconstruction to the past up to 1979 using
the 2003–2009 average and applying the decreasing trend in
sulfate aerosols from LMDz-OR-INCA, whose AOD trends
over Europe and the Mediterranean are median among the
ACCMIP models. Finally optical properties of the different
aerosol types in this region are proposed from Mie calculations
so that this reconstruction can be included in regional
climate models for aerosol radiative forcing and aerosol climate
studies.


Conclusions

Clear sky surface solar radiation flux climatologies inferred from high
accuracy Baseline Surface Radiation Network (BSRN) minute data

So far used for assessment of the CMIP5 clear sky fluxes and the
estimation of the energy balance under cloud free condition, as well as
cloud radiative effects, both globally and at BSRN sites

Clear sky fluxes maybe of use for diagnosing AeroCom simulations

BSRN clear sky solar records show an overall increase in radiation
since thel1990s with a recent leveling off

Daily surface solar radiation data from non-BSRN stations allow the
estimation of clear sky variations (“dimming/brightening”) further back
In time and with a higher spatial coverage

Also sunshine duration data may be of use to estimate variations of
clear sky surface solar radiation and AOD on multidecadal timescales
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ldentification of clear sky periods

Long and Ackerman (2002), JGR 105 (D12), 15609-15626

. Based on 1 minute dataof downwelling total and diffuse
shortwaveirradiance

. 4 tests applied:

A) Normalized total shortwave magnitude test Normalized with
solar zenitangle,nominalrangeof values for clear sky

B) Maximum diffuse shortwave test
clear sky diffuseirradiance below a certain threshold

C) Change in magnitude with time test
comparestemporal changein total irradiance,small for clear periods
comparedto cloudy periodsover shorttimescales

D) Normalized diffuse ratio vatiability test

diffuse divided by total irradiance,smooth timeseries for clear skies,
variability below threshold
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Global mean SW clearsky radiation budgets in CMIP5
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BSRN Measurement Accuracy Target

 Direct SWradiation: 1% or 2 Wm-2
(normal incidence pyrheliometer)

« Diffuse radiation: 4 % or 5 Wm-2
(ventilated pyranometer)

 Global Radiation 2% or 5 Wm-2
(ventilated pyranometer)

 Reflected SW radiation: 5%
(ventilated pyranometer)

« Downwellinglongwave radiation +/ - 2 Wm-2
(pyrgeometer)




hleranalyse Globalstrahlung (SW down)

Representativitat eines einzelnen Jahresmittelwertes ftr
mittlere Klimatiologie einer 2.5° Gitterbox:

Mittlerer Fehler: 7 %

zusammengesetzt aus:

- Zuféalliger Messfehler (2%)

- Vernachlassigung Trends (3%)

- Vernachlassigung interanuelle Variabilitat (4%)
- Subgrid Variabiltat (5%)

GCM Analysen:

- zufallige Messfehler, Trend, interannuelle Variabilitat:
minimiert,da nur langjahrige Messreihen

- Subgrid Variabilitat reduziert bei T106 (1.1° ) Analysen

Mittlerer Fehler der Obswertein GCM Vergleichen <<7 %




SW down update to 2014: clear sky

25 stations (min.10 years)_, 388 years totally, 16(14) pos, 9(3) neg. slopes
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SW Clear sky data Maria August 2015���Anz. Stationen:      25�Anzahl analysierter Jahre         388��mittlere steigung=     0.173622�median slope     0.163610�Anzahl Stationen mit pos. Slope      16, davon signifikant(slope > 1 STDERR)      14�Anzahl Stationen mit neg. Slope       9, davon signifikant(slope > 1 STDERR)       3��SW all sky trends at same sites:�Anz. Stationen:      25 (allerdings musste ich bei all sky von min 10 auf min 9 Jahre herunter, um PAL mitzunehem (PAL hat 10 Jahre clear sky, aber seltsamerweise nur 9 Jahre all sky)�Anzahl analysierter Jahre         377 (seltsamerweise auch kleiner als bei all sky)�mittlere steigung=     0.374383�median slope     0.358826�Anzahl Stationen mit pos. Slope      19, davon signifikant(slope > 1 STDERR)      13�Anzahl Stationen mit neg. Slope       6, davon signifikant(slope > 1 STDERR)       0�


Conclusions

Clear sky surface solar radiation flux climatologies inferred from high
accuracy Baseline Surface Radiation Network (BSRN) minute data.

So far used for assessment of the CMIP5 clear sky fluxes and the
estimation of the global energy balance under cloud free condition, as
well as the global cloud radiative effects

Maybe of use for diagnosing AeroCom simulations

BSRN records show an overall increase in clear sky surface solar
radiation since the1990s with a recent leveling off.

Daily surface solar radiation data from non-BSRN stations allow the
estimation of clear sky variations (“dimming/brightening”) further back
In time and with a higher spatial coverage

Also sunshine duration data may be of use to estimate variations of
clear sky surface solar radiation and AOD on multidecadal timescales



Composite solar clear sky BSRN time series

Composite time series
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Reconstruction of AOD from Sunshine duration

Correlation between clear sky Sunshine Duration
and AOD at 8 Aeronet sites in Spain
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Conclusions

Clear sky surface solar radiation fluxes inferred from high accuracy
Baseline Surface Radiation Network (BSRN) minute data.

Combined with CMIP5 models, has been used for the estimation of
the global energy balance under cloud free condition, as well as the
global cloud radiative effects

BSRN stations show an overall increase in clear sky surface solar
radiation since the1990s with a recent leveling off.

Dally surface solar radiation data from non-BSRN data allow the
estimation of clear sky variations further back in time

Also sunshine duration data may be of use to estimate variations of
clear sky surface solar radiation and AOD on multidecadal timescales
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