Combined A-Train aerosol observations to constrain direct aerosol radiative effects (DARE) in AeroCom models at different spatial and temporal averaging scales

J. Redemann¹, Y. Shinozuka², M. Kacenelenbogen², S. LeBlanc², M. Segal-Rozenhaimer², M. Vaughan³, P. Stier⁴, N. Schutgens⁵

NASA Ames - SRI - BAERI - NASA Langley - Univ of Oxford - VU University Amsterdam

https://earthscience.arc.nasa.gov/sunsat email: Jens.Redemann-1@nasa.gov

AeroCom, Helsinki, October 9-13, 2017

Motivation:

- 1) Quantifying anthropogenic aerosol radiative forcing (historical or future) of climate requires climate models.
- 2) Models show large spread in (even) clear-sky direct aerosol radiative forcing of climate.
- 3) Need to test the models with observations of the most closely related quantity = present-day total (anthropogenic plus natural) Direct Aerosol Radiative Effect (DARE)

✤ Motivation

- Approach
- Retrieval choices
- → Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

* Subset of AeroCom Phase 2 models with SW fluxes and no-aerosol runs stored

Retrieval choices

- 1) Use instantaneously collocated L2 data from MODIS, OMI, CALIOP (MOC)
- 2) Check whether collocated data from any given sensor is consistent with the
- pdf of the sensor's global data set
- 3) Observe satellite data quality flags
- 4) Use aerosol models that are consistent with in situ data sets from various field campaigns
- 5) Different choices for different locales:

Locale → Data ↓	Land - Dark target	Land - Enhanced Deep blue	Ocean
MODIS AOD 550nm 1240nm	CorrODLand (QA_Land=3) 550 nm provided 1240 nm extrapolated from 470, 550, 660 nm	DBSpecAOD. _Land (QA_Flag=3) 550 nm provided 1240 nm extrapolated from 412, 470, 660nm	EffODAvg_Ocean (QA_Ocean=1,2,3) 550 nm provided 1240 nm provided
OMI AAOD 388 nm	OMAERUV A.S.S.A.VsHeight (QA=0) SSA 388 nm provided + MODIS AOD 388 nm extrapolated from 470, 550, 660 nm	OMAERUV A.S.S.A.VsHeight (QA=0) SSA 388 nm provided + MODIS AOD 388 nm extrapolated from 412, 470, 660nm	OMAERO S.S.A.MW (QA=0) SSA 388nm provided + MODIS AOD 388nm extrapolated from seven bands 470- 2120
CALIOP A. backscat 532 nm	CALIOP integrated backscatter screening according to Redemann et al. 2012 (CALIOP zmax-zmin)		

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

AOD and SSA distribution from A-Train MOC

- Motivation
- Approach
- Retrieval choices
- → Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

Comparisons of SSA – MOC vs AERONET vs OMAERUV

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of DARE uncertainties due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

SSA comparisons to AERONET – Ocean & Land

Positive bias in input SSA data is removed in MOC retrieval

MODIS land DT + OMAERUV MODI

MODIS land DB + OMAERUV

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of DARE uncertainties due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

0.90 1.00 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89 0.91 0.10 0.20 0.30 0.80

Two main sources of uncertainty in calculating DARE from observations/retrievals:

1) $\langle DARE \rangle \neq DARE(\langle \tau_{AAC}, \omega_{AAC}, g_{AAC} \rangle, \langle A_{surface} \rangle)$

Global assessment of this uncertainty for MOC aerosol retrievals is still ongoing!

etrievals:

t) + δext

) + δ SSA

ː) + δg

s0m1s0

p1p1s0

p1p1p1

p1m1p1

m1p1p1

m1s0m1

m1m1m1

s0p1m1

p1s0p1

plplml

s0s0p1

all retrievals

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with **AERONET**
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of **DARE** uncertainties due to sampling
- → Seasonal mean DARE_{clear-sky}
- Conclusions

Two main sources of uncertainty in calculating DARE from observations/retrievals:2) Is observational sampling (x,t) sufficient to calculate DARE?

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

Two main sources of uncertainty in calculating DARE from observations/retrievals:2) Is observational sampling (x,t) sufficient to calculate DARE?

See also: Colarco et al., AMT, 2014; , Schutgens et al., ACP, 2016

- ✤ Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

Two main sources of uncertainty in calculating DARE from observations/retrievals:2) Is observational sampling (x,t) sufficient to

calculate DARE?

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison
 with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

Two main sources of uncertainty in calculating DARE from observations/retrievals:2) Is observational sampling (x,t) sufficient to calculate DARE?

Idea: Use models to assess uncertainty in aerosol properties from sampling, i.e., **compare models at full resolution to models at MOC sampling**! See also Schutgens et al., 2016 ACP

> Aerosol Retrievals: ext $(\lambda, z) + \delta$ ext SSA $(\lambda, z) + \delta$ SSA g $(\lambda, z) + \delta$ g

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison
 with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
 - Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

Sampling biases in MOC aerosol properties assessed using ECHAM-HAM model – AOD & SSA

Sampling biases in MOC aerosol properties assessed using models - AOD

Sampling biases in MOC aerosol properties assessed using models - AOD

Sampling biases in MOC aerosol properties assessed using models - SSA

Comparison of A-Train MOC to 4 climate models: Seasonal AOD, SSA, DARE-TOA, DARE-surface

Conclusions

- 1. Combined A-Train (MODIS, OMI and CALIOP L2 MOC) retrievals yield aerosol properties that agree better with AERONET in terms of SSA(441nm) than input OMI+MODIS data.
- 2. Assessments of clear-sky Direct Aerosol Radiative Effects (DARE) from observations have uncertainties
 - A. from translating the mean and range of aerosol properties into a mean and range of DARE, and
 - B. from spatial/temporal sampling.
- 3. Using three climate models we find the impact of temporal sampling for seasonal
 - A. zonal mean AOD was less than 0.05 at all latitudes, and
 - B. zonal mean SSA was generally less than 0.03 at all latitudes except N of 50N in ECHAM-HAM, and
 - C. DARE (clear-sky) is affected by ~10% in JJA season when MOC sampling is sparse in NH (>30°N).
- 4. Do models produce proper temporal variation in aerosol properties?
- 5. A-Train MOC derived clear-sky seasonal DARE @TOA and @SFC agree best with GMI-MERRA. Neither show the clear seasonal cycle in AOD, SSA and DARE, which was prevalent in most models to date.

- Motivation
- Approach
- Retrieval choices
- Results
 - AOD & SSA distributions
 - SSA comparison with AERONET
 - Comparisons to AeroCom Phase 2
 - Uncertainties in observational DARE
- Assessment of
 DARE uncertainties
 due to sampling
- Seasonal mean
 DARE_{clear-sky}
- Conclusions

