Minimizing the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

D. Neubauer¹, M. Christensen², C. Poulsen², U. Lohmann¹ ¹ETH Zurich, ²RAL Space

16th AeroCom workshop, 10 October 2017, Helsinki

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

ospheric and Climate Scien

- Near cloud aerosol retrievals possibly influenced by: aerosol swelling; misclassification of cloud particles; 3D effects near cloud edges
- Marked reduction in aerosol forcing by excluding near cloud aerosol

Aerosol swelling

ECHAM6-HAM2_Ref - dln(LWP)/dln(Aldry)

- Global model resolution is typical 100x100 km
- Water uptake of aerosol is known \rightarrow dry aerosol index (Aldry)

low liquid clouds; 3-hourly instantaneous data; 1995-2012; susceptibilities are computed for each season and grid point; 60°N-60°S

ECHAM6-HAM2_Ref – dln(LWP)/dln(AI)

Wet scavenging

- Removing raining scenes reveals the cloud lifetime effect
- Moderate and heavy precipitation cause a lasting impact on Aldry

ECHAM6-HAM2_Ref - dln(LWP)/dln(Aldry)

ECHAM6-HAM2_Ref - dln(LWP)/dln(Aldry)

non-raining

(precipitation < 0.5 mm / day)

Environmental regime composites

Regimes defined by:

- Precipitation state: Non-raining: precip. < 0.5 mm/day; Raining: precip > 0.5 mm/day
- Free tropospheric relative humidity (RH_{FT}):
- Lower tropospheric stability (LTS):

Average over global oceans

MODIS-CERES data from Christensen et al. (2016)

Dry: $RH_{FT} < 40\%$; Moist: $RH_{FT} > 40\%$ Unstable: LTS < 17K; Stable: LTS > 17K

In-cloud aerosol processing

Aerosol processing increases aerosol size

ospheric and Climate Sciel

0

nstitute

AODdry depends less on size than Aldry → less negative susceptibilities

6

Prognostic vs. diagnostic precipitation scheme

$$ACI_{L} = \frac{d \ln LWP}{d \ln AOD/AI}$$

- Low liquid clouds in this study
- Prognostic precipitation (PP) leads to increased susceptibilities although the accretion/autoconversion ratio is increased (Sant et al., 2015)
- Shift from rain to drizzle of marine stratocumulus

IACE IT Institute for Atmospheric and Climate Science

Effective radiative forcing (ERF_{aci}) of low liquid clouds (average over global oceans)

Neubauer et al. (2017), ACP, accepted

AATSR-CAPA and MODIS-CAPA data from Christensen et al. (2017), ACP, accepted MODIS-CERES data from Chen et al. (2014)

8

IACEIH Institute for Atmospheric and Climate Science

Summary and Outlook

- Better to compare the dry aerosol from model simulations to (artefact reduced) satellite data for studying susceptibilities
- Smaller ACI_L susceptibility in ECHAM6-HAM2 than in previous studies due to reduced RH impact
- Smaller $\mathsf{ERF}_{\mathsf{aci}}$ in ECHAM6-HAM2 for dry than for humid aerosol
- Wet scavening and aerosol processing have an impact
- ACI_L is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2

