The AeroCom Biomass Burning Experiment Mariya Petrenko, Maria Val Martin, Ralph Kahn, Mian Chin

Wildfire Smoke Injection Heights & Source Strengths

Val Martin et al. ACP 2010

MODIS Smoke Plume Image & Aerosol Amount Snapshots

GoCART Model-Simulated Aerosol Amount Snapshots for Different Assumed Source Strengths

Different Techniques for Assuming Model Source Strength *Overestimate* or *Underestimate* Observation *Systematically* in Different Regions *Petrenko et al., JGR 2012*

Source Strength

Refinements to the MODIS BB AOD Snapshot Dataset

- (1) Expanded the *Number of Fire Cases* from 124 to over 900
- (2) Used scaled reanalysis-model simulations to *Fill Missing AOD Retrievals* in the MODIS observations
- (3) Separated the BB Components of the total AOD from background aerosol in the near-source regions (using pre-fire-season AOD statistics)
- (4) Included emissions from *Small Fires* that are not identified explicitly in the satellite observations (*GFED4.1s*)

Background AOD is the modal mean AOD for the month (BG month) at the beginning of, or just before, the burning season.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 0.9 1.0 1.1 1.2 1.3 1.4

MODIS BB AOD = Plume $AOD_{tot} - AOD_{bkgnd}$

Petrenko et al., JGR 2017 in press

MODIS BB AOD = AOD - BG (0.126)

Source Strength Satellite Reference Observational Dataset 2004, 2006-2008

75 45 Canada Europe WIIS 30 3 15 SEAsia LAmerica 0 15 NAustra SAmerica -30 -45 -135 -90 90 135 180 60 45 10 Undefined ■ 1 Tree cover, broadleaved, evergreen 2 Tree cover, broadleaved, deciduous, claning 11 Shrub cover, closed-open, evergreen 3 Tree cover, broadleaved, open 12 Shrub cover, closed-open, deciduous 13 Herbaceous cover, closed-open 14 Sparse herbaceous or sparse shrub cover 15 Regularly flooded shrub and/or herb. cov 4 Tree cover, needle-leaved, evergreen 5 Tree cover, needle-leaved, deciduous 6 Tree cover mixed leaf type 7 Tree cover, regularly flooded, fresh war 16 Cultivated and managed areas 8 Tree cover, regularly flooded, saline 1 Mosaic:Cropland/Tree cover/other veg 9 Mosaic: tree cover/other natural veg _____18 Cropland/Shrub and/or grass cover

972 Cases in 16 Colored Ecosystems (497 in 2008)

Month when case was observed by MODIS

The colored squares represent ecosystems

Petrenko et al., 2017 in press

Source Strength

Adjustment Factor Situational Groupings

- Group 1 Discrete, Strong Smoke Plumes dominate, minimal adjustment needed
- Group 2 Smoke source Adjustments Resolve most AOD Discrepancies
- Group 3 Background AOD High & Comparable to or larger than smoke AOD

Group 4 – Background AOD Low but Comparable to smoke AOD

Petrenko et al., 2017 in press

Group 1 – Alaska, Canada, Indonesia, Eastern Siberia
Group 2 – South Australia, Eastern USA, South America, Latin America (with SF)
Group 3 – India, China, Southeast Asia, North & South-Central Africa
Group 4 – Europe, + Crop, Cultivated ecosystems almost everywhere, & some Shrub

Petrenko et al., 2017 in prep.

GEOS5

INCA

GOCART

ECHAM6 1-HAM2 2

ECHAM6-SALSA

GFDL-AM3p10

GISS-MATRIX GISS-OMA

Biomass Burning Experiment PHASE 2: Fire Emission Injection Heights

- About 50,000 smoke plumes digitized 2008-2010 (~16,000 for 2008)
- Each plume is Operator-Processed using MINXv4.0, and Quality Controlled
- For N America, about 18% 20% of plumes are injected above the PBL
- Raw, graphics and summary files, and documentation are *available on-line*:

https://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes2/ Val Martin et al., 2017 in prep.

Biomass Burning Experiment PHASE 2: Fire Emission Injection Heights

- Heights at 1.1 km Horizontal res., ~250-500 m Vertical res.
- Keyed to the *Elevation of Maximum Spatial Contrast*
- Parallax is corrected for proper motion (Wind Correction)
- Height histogram gives some Indication of Vertical Extent

Biomass Burning Experiment PHASE 2: Fire Emission Injection Heights

Val Martin et al., 2017 in prep.

Example Injection Height Vertical Distributions Stratified by Region and Biome

Biomass Burning Experiment PHASE 2: Global Statistics for 2008

Val Martin et al., 2017 in prep.

Eyjafjallajokull Volcano, Iceland May 07, 2010 Eruption NOAA HySPLIT Model

Baseline HYSPLIT Simulation

MINX-Initialized Simulation

Conclusion:

When the injection height is above the PBL in regions with significant **MINX-initiated** shear, wind simulations better represent satellite observations.

Eyjafjallajokull (May 7, 2010 12:35 UTC)

ŝ

We invite AeroCom participants to run their models considering these injection-height constraints. How these data might be applied in models would be a topic for discussion at AeroCom, and as the study progresses