Imperial College London

Constraining the aerosol influence on liquid water path

E. Gryspeerdt ¹ T. Goren ² J. Quaas ² O. Sourdeval ² A. Gettelman ³ ¹Imperial College London ²Universitt Leipzig ³National Center for Atmospheric Research October 9, 2017

Aerosols and liquid clouds

Aerosol modify the properties of liquid clouds

The albedo of a liquid cloud scene is a function of:

- Cloud fraction (CF)
- Liquid water path (LWP)
- Droplet number concentration (N_d)

- Fitting CERES scene albedo (at 1° × 1°) as f(CF, LWP, N_d) can diagnose liquid cloud albedo from MODIS cloud properties
- What is the aerosol effect/what is a good model constraint?

Aerosols and liquid clouds

Aerosol modify the properties of liquid clouds

The albedo of a liquid cloud scene is a function of:

- Cloud fraction (CF)
- Liquid water path (LWP)
- ► Droplet number concentration (N_d) (√)

- Fitting CERES scene albedo (at 1° × 1°) as f(CF, LWP, N_d) can diagnose liquid cloud albedo from MODIS cloud properties
- What is the aerosol effect/what is a good model constraint?

Aerosols and liquid clouds

Aerosol modify the properties of liquid clouds

The albedo of a liquid cloud scene is a function of:

- ► Cloud fraction (CF) (√)
- Liquid water path (LWP)
- ► Droplet number concentration (N_d) (√)

- Fitting CERES scene albedo (at 1° × 1°) as f(CF, LWP, N_d) can diagnose liquid cloud albedo from MODIS cloud properties
- What is the aerosol effect/what is a good model constraint?

 The Aerosol optical depth (AOD)-CF relationship is controlled by humidity (RH)

- The Aerosol optical depth (AOD)-CF relationship is controlled by humidity (RH)
- LWP is strongly correlated to CF (lower plot, data from MODIS Aqua)

- The Aerosol optical depth (AOD)-CF relationship is controlled by humidity (RH)
- LWP is strongly correlated to CF (lower plot, data from MODIS Aqua)
- The AOD-LWP relationship is also confounded by humidity

- The Aerosol optical depth (AOD)-CF relationship is controlled by humidity (RH)
- LWP is strongly correlated to CF (lower plot, data from MODIS Aqua)
- The AOD-LWP relationship is also confounded by humidity
- How do we separate the aerosol effect?

How do we identify aerosol effects?

A number of different methods have been used:

- Controlling for confounders
- Exogenous perturbations (experiments)
- Mediating variables

Mediating variables

Gryspeerdt et al., JGR, 2016

Mediating variables

 Requires knowledge of the confounders (but not measurement!)

Gryspeerdt et al., JGR, 2016

Mediating variables

 Requires knowledge of the confounders (but not measurement!)

Gryspeerdt et al., JGR, 2016

Can we use this method for identifying the aerosol-LWP relationship?

$$\frac{dLWP}{dAI}\Big|_{causal} = \frac{dLWP}{dN_d} \times \frac{dN_d}{dAI}$$

Can we use this method for identifying the aerosol-LWP relationship?

$$\left.\frac{dLWP}{dAI}\right|_{causal} = \frac{dLWP}{dN_d} \times \frac{dN_d}{dAI}$$

Note that we can't test this by setting N_d constant

$$\left. \frac{dN_d}{dAI} = 0
ightarrow \left. \frac{dLWP}{dAI} \right|_{causal} = 0$$

But it should also be able to "predict" the anthropogenic LWP change (Δ LWP_{actual})

ECHAM6 HAM

$$\Delta LWP_{diag} = \left. \frac{dLWP}{dAI} \right|_{PD} \times \Delta AI$$

Actual **ΔLWP**

Diag. ∆LWP (AI)

ECHAM6 HAM

CAM5.3

CAM5.3 MG2

CAM5.3 CLUBB-MG2

$$\Delta LWP_{diag} = \left. \frac{dLWP}{dAI} \right|_{PD} \times \Delta AI$$

Actual ΔLWP

50

Calculating ΔN_d

► Anthropogenic △N_d can be accurately calculated from the present day CCN-N_d relationship

$$\Delta N_d = \left. \frac{dN_d}{dCCN} \right|_{PD} \times \Delta CCN$$

 Use conditional probabilities to conserve the non-linearity (e.g. P(N_d|CCN))

Gryspeerdt et al, PNAS, 2017

Actual ∆LWP

Most of these models suggest a causal network of this form:

Most of these models suggest a causal network of this form:

Confounding effects may exist in observations that are not simulated (N):

Most of these models suggest a causal network of this form:

Confounding effects may exist in observations that are not simulated (N):

- Retrieval errors
 - Correlated errors in N_d and LWP
 - Systematic errors in cloud retrievals (e.g. sub-adiabaticity)

Most of these models suggest a causal network of this form:

Confounding effects may exist in observations that are not simulated (N):

- Retrieval errors
 - Correlated errors in N_d and LWP
 - Systematic errors in cloud retrievals (e.g. sub-adiabaticity)
- Feedbacks
 - Aerosol dependent entrainment of dry air
 - (Aerosol processing)

Satellite relationships

The N_d-LWP relationship in MODIS data is strongly non-linear

- Increase in LWP with increasing N_d at low N_d
- Decrease in LWP at high N_d

Satellite relationships

Correlated errors?

Both N_d ($\propto \tau_c^{0.5} r_e^{-2.5}$) and LWP ($\propto \tau_c r_e$) are calculated from r_e and τ_c

• Errors in r_e or τ_c generate correlated errors in N_d and LWP.

Correlated errors?

Both N_d ($\propto \tau_c^{0.5} r_e^{-2.5}$) and LWP ($\propto \tau_c r_e$) are calculated from r_e and τ_c

• Errors in r_e or τ_c generate correlated errors in N_d and LWP.

Similar results using MODIS and AMSR-E (microwave) LWP

- Retrieval errors don't dominate the relationship
- Although they still play a role

What radiative forcing does this suggest?

- Changes in N_d only (RFaci)
 - ▶ ≈-0.30 Wm⁻²

InAOD-Albedo Sensitivty

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

- Changes in N_d only (RFaci)
 - \approx -0.30 Wm⁻²
- Changes in CF (mediated by N_d)
 - ► ≈-0.50 Wm⁻² (Gryspeerdt et al., 2016)

- Changes in N_d only (RFaci)
 - ▶ ≈-0.30 Wm⁻²
- Changes in CF (mediated by N_d)
 - ≈-0.50 Wm⁻² (Gryspeerdt et al., 2016)
- Changes in LWP (mediated by N_d)
 - ► ≈+0.27 Wm⁻² (upper bound)

- Changes in N_d only (RFaci)
 - ▶ ≈-0.30 Wm⁻²
- Changes in CF (mediated by N_d)
 - ≈-0.50 Wm⁻² (Gryspeerdt et al., 2016)
- Changes in LWP (mediated by N_d)
 - ► ≈+0.27 Wm⁻² (upper bound)
- Total (liquid clouds only)
 - ▶ ≈-0.51 Wm⁻²

Exogenous perturbations

If the N_d -LWP relationship is causal, it should hold under all conditions

Exogenous perturbations

If the N_d -LWP relationship is causal, it should hold under all conditions

Exogenous perturbations

If the N_d -LWP relationship is causal, it should hold under all conditions

Conditions where the N_d is varied exogenously provide an opportunity to test this

- Volcanoes
- Shiptracks

Volcanic emissions

 In 2007, N_d-LWP similar in regions A and B

- Region A shows weaker LWP decrease with N_d in 2008
- Suggests little LWP change at high N_d

Shiptracks

- A similar effect is observed in shiptracks
- LWP increases in shiptracks where the "shiptrack" N_d is low
- No change in LWP at high "shiptrack" N_d

Thanks to Matt Christensen for shiptrack data!

Scale dependence

The N_d-LWP relationship is scale dependent

 Must reach temporal/spatial scale where N_d is varied by aerosol

- Model output confirms that the AI-LWP relationship overestimates the aerosol effect
 - The (plain) AI-LWP relationship overestimates the role of aerosols
 - The N_d-LWP seems a good choice (with caveats!)

- Model output confirms that the AI-LWP relationship overestimates the aerosol effect
 - The (plain) AI-LWP relationship overestimates the role of aerosols
 - The N_d-LWP seems a good choice (with caveats!)
- Satellite observations suggest increases and decreases in LWP with N_d
 - Similar results with microwave LWP suggest not a retrieval issue

- Model output confirms that the AI-LWP relationship overestimates the aerosol effect
 - The (plain) AI-LWP relationship overestimates the role of aerosols
 - The N_d-LWP seems a good choice (with caveats!)
- Satellite observations suggest increases and decreases in LWP with N_d
 - Similar results with microwave LWP suggest not a retrieval issue
- Feedbacks/other confounders play a role
 - May obscure a small causal LWP change at high N_d

- Model output confirms that the AI-LWP relationship overestimates the aerosol effect
 - The (plain) AI-LWP relationship overestimates the role of aerosols
 - The N_d-LWP seems a good choice (with caveats!)
- Satellite observations suggest increases and decreases in LWP with N_d
 - Similar results with microwave LWP suggest not a retrieval issue
- Feedbacks/other confounders play a role
 - May obscure a small causal LWP change at high N_d
- What about ice processes... ?

