

Hyvää päivää = Good afternoon

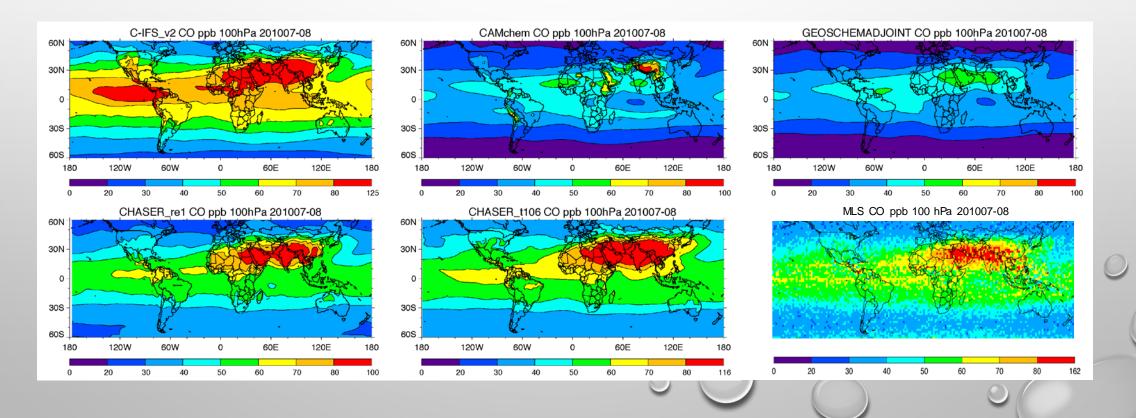
TWO PROPOSED AEROCOM MODEL EXPERIMENTS/ANALYSIS: UTLS AND ACRI

- MOTIVATION
- CURRENT SITUATION OF MODELING STUDIES
- PROPOSED EXPERIMENTS/ANALYSIS

UTLS –

AEROSOLS IN THE UPPER TROPOSPHERE: NATURAL AND ANTHROPOGENIC SOURCES, MONSOON TRANSPORT, AND DECADAL TRENDS

MIAN CHIN¹, HUISHENG BIAN^{1,2}, QIAN TAN^{3,4}, VALENTINA AQUILA^{1,5}, AND PETER COLARCO¹


¹NASA GODDARD SPACE FLIGHT CENTER ²UNIVERSITY OF MARYLAND BALTIMORE COUNTY ³NASA AMES RESEARCH CENTER ⁴BAY AREA ENVIRONMENTAL RESEARCH INC. ⁵AMERICAN UNIVERSITY

MOTIVATION

- UTLS is a climate sensitive region
- Aerosols in UTLS affect radiative balance, ice cloud formation, and chemistry
- Aerosols in UTLS are from anthropogenic sources transported by deep convections especially during the summer monsoon season, from volcanic eruptions, and sometimes pyrocovective fires and even occasionally dust storms
- Models show very large differences in this region much more diverse than the diversity in column AOD or surface concentrations shown in previous AeroCom studies. Although previous AeroCom comparisons of vertical profiles (e.g., BC from ARCTAS and HIPPO) have shown large differences in the free troposphere, there is a need for coordinated model experiment focusing on the UTLS

CURRENT MODEL BEHAVIOR

MODEL DIVERSITY – EXAMPLES OF CO AT 100 HPA

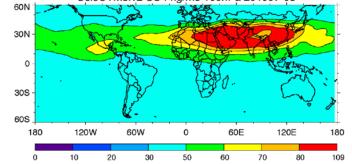
MODEL DIVERSITY – EXAMPLES OF SULFATE AT 100 HPA

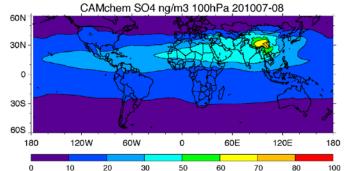
GEOSCHEMADJOINT SO4 ng/m3 100hPa 201007-08 60N 30N · 0 30S 60S 180 120W 60W 0 60E 120E 180

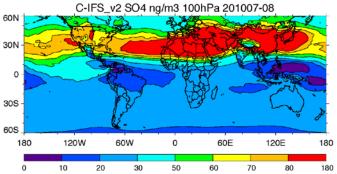
OsloCTM3.v2 SO4 ng/m3 100hPa 201007-08

50

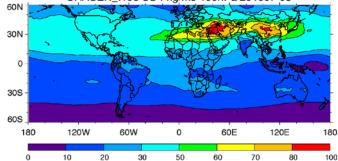
60

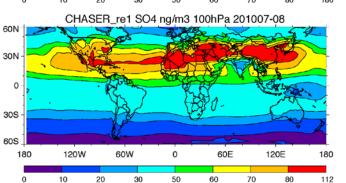

70

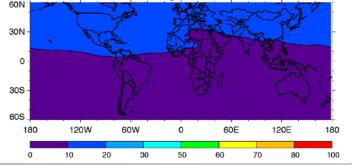

80

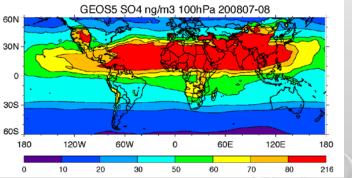

100

30


20

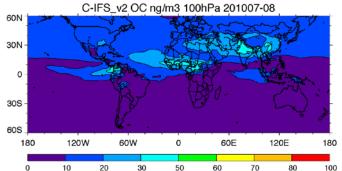


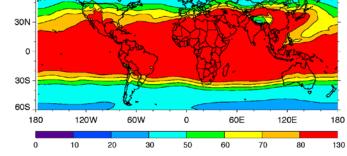

CHASER_t106 SO4 ng/m3 100hPa 201007-08



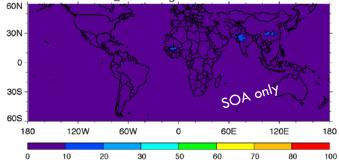
SPRINTARS SO4 ng/m3 100hPa 201007-08

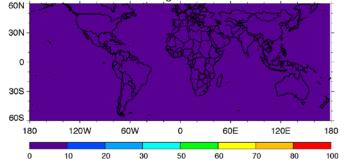
0

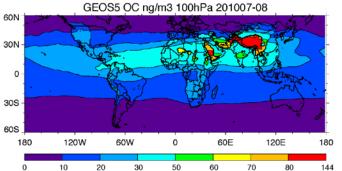


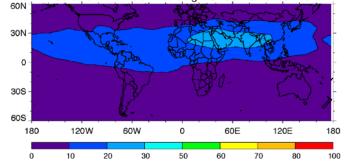


MODEL DIVERSITY – EXAMPLES OF OC AT 100 HPA

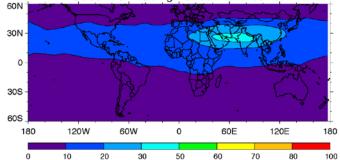

CAMchem OC ng/m3 100hPa 201007-08


60N


CHASER_t106 OC ng/m3 100hPa 201007-08

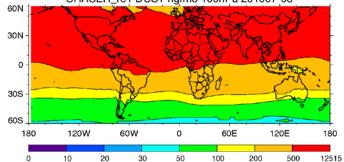

CHASER_re1 OC ng/m3 100hPa 201007-08 60N -30N -0 -SOA only 30S -60S 60W 180 120W 0 60E 120E 180 30 50 70 80 10 20 60 100 0

SPRINTARS OC ng/m3 100hPa 201007-08



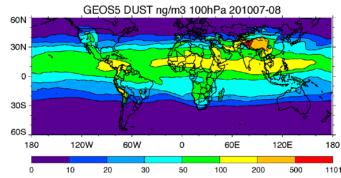
GEOSCHEMADJOINT OC ng/m3 100hPa 201007-08

OsloCTM3.v2 OC ng/m3 100hPa 201007-08


GOCARTv5 OC ng/m3 100hPa 201007-08

MODEL DIVERSITY – EXAMPLES OF DUST AT 100 HPA

C-IFS_v2 DUST ng/m3 100hPa 201007-08 60N 60N 30N -30N -0 -0 30S -30S · 60S . 60S 180 120W 60W 0 60E 120E 180 180 4457 30 50 100 200 500 20


CHASER_re1 DUST ng/m3 100hPa 201007-08

SPRINTARS DUST ng/m3 100hPa 201007-08 60N 30N -0 30S 60S 180 120W 60W 0 60E 120E 180 0 20 30 50 100 200 500 102

CAMchem DUST ng/m3 100hPa 201007-08 60N 30N 400 500 180 120W 60W 0 60W 0 60E 120E 180 100 100 200 500 1079

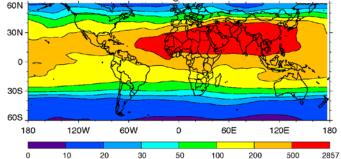
CHASER_t106 DUST ng/m3 100hPa 201007-08 60N 30N -0 30S 60S 180 120W 60W 60E 120E 0 180 30 50 100 200 500 3520 10 20 0

GEOSCHEMADJOINT DUST ng/m3 100hPa 201007-08

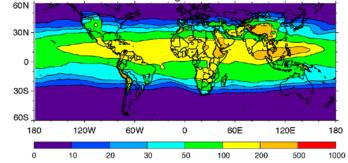
OsloCTM3.v2 DUST ng/m3 100hPa 201007-08

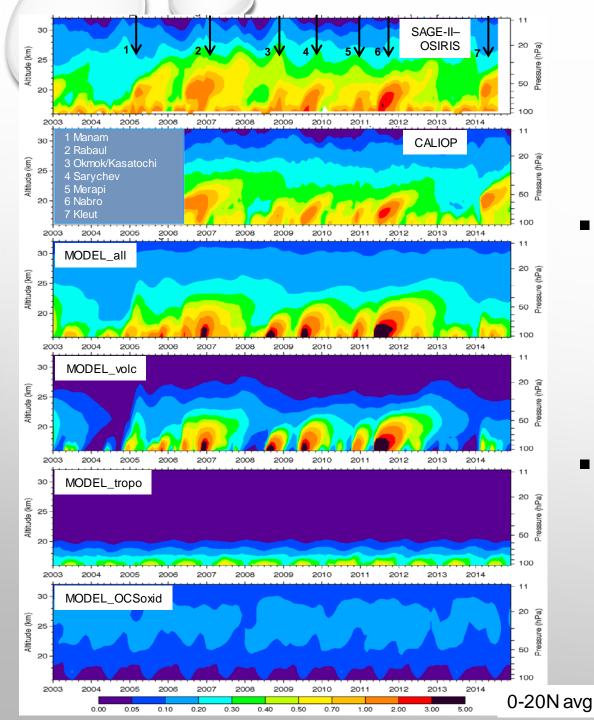
50

100


200

500


1000


30

20

GOCARTv5 DUST ng/m3 100hPa 201007-08

VOLCANIC VS. ANTHROPOGENIC VS. OTHER SOURCES

- GEOS-5 simulation, 2003-2014
 - Anthropogenic: EDGAR 4.1(?)
 - Volcanic: Carn et al., 2015, 2016 (?)
 - Biomass burning: FEER (Ichoku and Ellison, 2014)
 - OCS: fixed surface concentrations at 500 ppt
- Comparisons with satellite data from OSIRIS and CALIOP (shown in left 0-20N average)

PROPOSED AEROCOM UTLS EXPERIMENT/ANALYSIS

Objectives:

- Compare and evaluate the model simulated aerosol and precursors in the UTLS regions
- Examine the pathways of aerosols in the UTLS region (e.g., roles of convective transport, chemistry, and direct injection)
- Assess the contributions of anthropogenic and volcanic emissions to the decadal variations of UTLS aerosols
- Coordinate with other community model experiments/analysis (Stratospheric Sulfur and its Role in Climate or SSiRC, Atmospheric Chemistry and Asian Monsoon or ACAM)

MODEL SIMULATIONS

Years:	2002-2014 (desired: 1998-2017)
Emission amount:	
Anthropogenic	CMIP6
Volcanic	OMI-based (Carn et al., 2015, 2016)
Biomass burning	GFEDv4 or FEER (Ichoku and Ellison, 2014)
Dust, sea salt, biogenic	Model calculated
Emission height:	
Anthropogenic	Surface layer
Biomass burning	Boundary layer
Volcanic	OMI-based estimate (Carn et al., 2015, 2017)
Other (dust, sea salt, biogenic)	Model-calculated
Model simulations:	
BASE	Base simulation with all sources
VOL0	Simulation without volcanic emissions
FIRO	Simulation without biomass burning emissions
ANT0	Simulation without anthropogenic emissions
Transport tracer:	CO with prescribed sources (will be provided) and a 50-day decay time
Wet scavenging tracer:	Pb210 (or soluble CO?)
Model output:	File specification will be provided

See poster by Chin et al. for more information

-

AVAILABLE DATA

 \bigcirc

Satellite:		
Column SO ₂	OMI	2004 (later half) – present
UTLS SO ₂ (with vertical information)	MIPAS MLS	2003–2012 2004 (later half) – present
UTLSCO	MLS AIRS+MLS	2004 (later half) – present
Stratospheric aerosol vertical profile	SAGE II OSIRIS SCIAMACHY CALIOP OMPS	1998 – 2005 2001 – present 2003 – 2012 2006 (later half) – present 2012 – present

Aircraft:		
UT aerosol (S, C) concentration	CARIBIC	2004 – present
SO ₂ , sulfate, and aerosol extinction vertical profiles	ICARTT INTEX-B ARCTAS VIRGAS POSIDON StratoClim HIPPO Atom	2003 – 2012 2004 (later half) – present 2008 2016 2016 2017 2009 – 2011 (5 phases) 2016 – 2018 (4 phases)

AGU CHAPMAN CONFERENCE: STRATOSPHERIC AEROSOLS IN THE POST-PINATUBO ERA PUERTO DE LA CRUZ, TENERIFE, SPAIN, 18-23 MARCH 2018

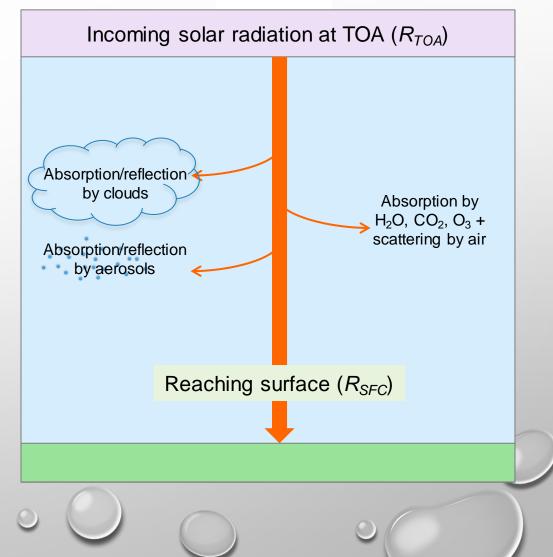
Abstract deadline: 8 November 2017 !!!

http://chapman.agu.org/stratospheric-aerosol/

ACRI:

AEROSOL-CLOUD-RADIATION INTERACTIONS AND THEIR EFFECTS ON SURFACE RADIATION TRENDS

MIAN CHIN, HUISHENG BIAN, MARTIN WILD*, HONGBIN YU, XIAOHUA PAN


NASA GODDARD SPACE FLIGHT CENTER, USA

*ETH, SWITZERLAND

MOTIVATION

Shortwave (SW) solar radiation budget

- Globally, about 53-55% of the incoming solar radiation reaches the Earth's surface, the rest being reflected or absorbed by the atmosphere
 - Long-term surface observations have shown decrease or increase trends of solar radiation reaching the surface (R_{SFC}), aka "dimming" or "brightening", in difference regions
 - Several previous studies have suggested that the *R_{SFS}* trends are determined by the changes of anthropogenic aerosols in those regions
 - Is aerosol responsible for the R_{SFC} change? If yes, how? If no, then who is and why?

CURRENT MODEL STUDY **EXAMPLE: GOCART MODEL ANALYSIS** NYA 78.93N 11.93E Spitsbergen, Norway CAR 44.08N 5.06E Carpentras, France E13 36.60N 97.49W SGP, OK USA TAT 36.06N 140.13E Tateno, Japan TAM 22.79N 5.53E NAU 0.52S 166.92E Nauru Island, Nauru Tamanrasset, Algeria 0.06 Potsdam, Germany 52.38N 13.10E 500 **GEBA 1197** 400 Ë 0.04 300 ₹ Rs/Rt anomaly 200 0.02 m 100 0.00 8 10 12 2 10 -0.02500 m⁻²) 400 -0.04 ≥ 300 -0.06 R= 0.848 (0.743) 200 щ, 100 1990 1995 2000 2005 1980 1985 0.06 🗆 6 10 12 2 2 8 10 12 10 12 10 12 2 8 10 12 8 10 12 Dum Dum, India 22.65N 88.45E 6 8 2 8 2 8 6 2 - 4 6 100 GEBA 0868 m⁻²) 0.04 80 ₹ 60 Rs/Rt anomaly 0.02 40 0.00 20 ц, -0.02 2 6 8 10 12 12 10 12 2 8 10 12 10 12 8 Model 🛆 GEWEX SRB UMD SRB CERES EBAF BSRN -0.04

-0.06 R= 0.824 (0.773)

1985

1990

1995

2000

2005

1980

- Aerosol direct radiative effects show small effects on the change of R_{SFC} in all sky condition
- Aerosol effect can only be detected with diffuse radiation in cloud-free sky

AEROSOL-CLOUD-RADIATION INTERACTION

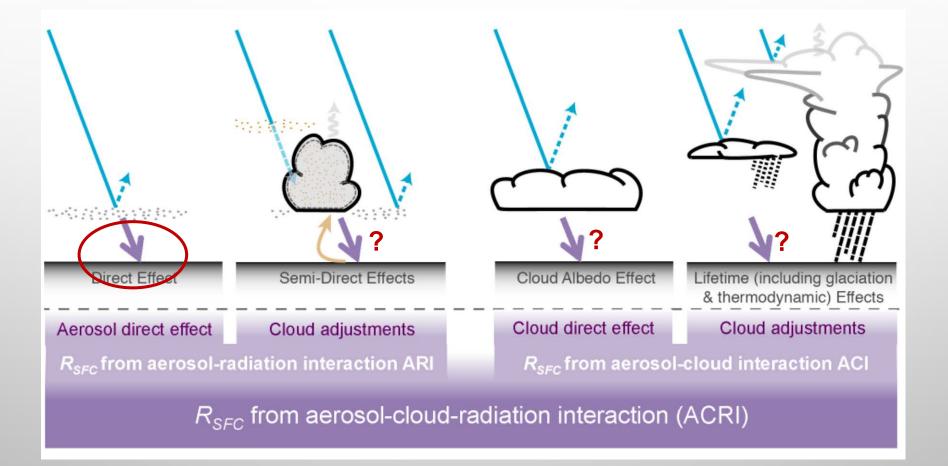
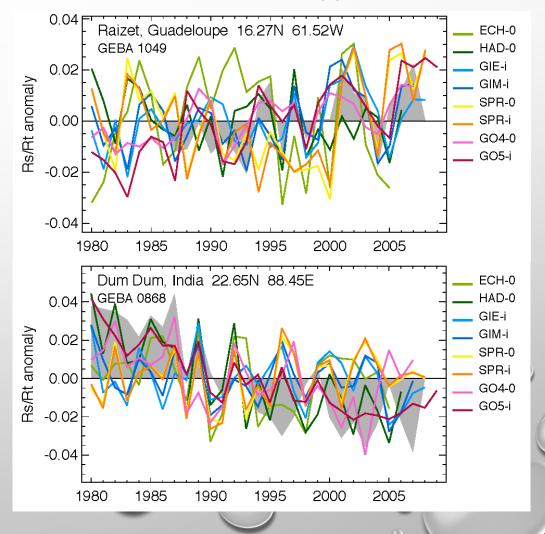



Figure adapted from Boucher et al., 2013 with modifications

PREVIOUS AEROCOM MODELS RELATED TO R_{SFC} TRENDS

- All sky R_{SFC} shows that models are not consistent with trends – problem of aerosol or clouds?
- Only a few model provided cloud-free sky R_{SFC} (with different definition/conditions of "cloud-free"), and even fewer (3) provided diffuse radiation
- It is time to tackle this important issue as a community with a better design of model experiment

Comparison of model simulated R_{SFC} with GEBA, all sky

PROPOSED AEROCOM ACRI EXPERIMENT/ANALYSIS

Objectives:

- To assess the effect of climate change/climate variability on multidecadal trends in cloud cover and aerosol levels;
- To estimate the role of aerosols on multidecadal variations in cloud cover through ACRI under different aerosol and cloud regimes; and
- To identify the roles of aerosols, clouds, and climate variability on SW downwelling radiation at the surface in recent decades

AGCM MODEL SIMULATIONS

Years:	1985-2015
Emission amount:	
Anthropogenic	CMIP6
Volcanic	TOMS+OMI-based (1985-2015) Carn et al., 2015, 2016)
Biomass burning	Retro (1985-1996) & GFEDv4 (1997-2015)
Dust, sea salt, biogenic	Model calculated
Emission height:	
Anthropogenic	Surface layer
Biomass burning	Boundary layer
Volcanic	TOMS+OMI-based estimate (Carn et al., 2015, 2016)
Model simulations:	
BASE	Simulation time-varying all sources and SST, coupled ACRI
FIXSST	Same as BASE but with 1985 SST for all years
FIXAER	Same as BASE but with aerosol concentrations at 1985
FIXARI	Same as BASE but with 1985 aerosol for ARI part
FIXACI	Same as BASE but with 1985 aerosol for ACI part
Model output:	File specification will be provided

See poster by Chin et al. for more information

AVAILABLE DATA FOR MODEL EVALUATION

Location of long- term sites	GEBA	BSRN
# long-term sites	323 sites with data record > 20 years	26 sites with data record > 10 years (1992-)
Variables used in this study	Monthly average total <i>rsds</i> under all sky condition	Monthly average total, direct, diffuse under all sky and cloud-free conditions
Info website	http://www.geba.ethz.ch/	http://bsrn.awi.de/

Satellite-based	ISCCP-FD	GEWEX-SRB	UMD-SRB	CERES-EBAF
Time period*	1983 – 2009	1983 – 2007	1983 – 2014	2000 – 2015
Relevant product	Total and cloud-free (rsds, rsdscs)	Total and cloud-free (rsds, rsdscs)	Total and cloud-free (rsds, rsdscs ^{&})	Total and cloud-free (rsds, rsdscs)
Spatial resolution	2.5° ×2.5°	1° ×1°	1 ° × 1 °	1 ° × 1 °
Cloud fields used	ISCCP-D1	ISCCP-D1	ISCCP-DX	CALIPSO, CloudSat, CERES, MODIS (CCCM)
Aerosol fields used	Trop: GISS model climatology. Strat: SAGEII climatology	AeroCom climatology with variability from ECHAM model	LUT built with information from MODIS, AERONET, and other sources	AERONET/MODIS validation-based estimates
Reference	Zhang et al., 2004	Zhang et al., 2013	Ma and Pinker, 2012	Kato et al., 2013

COORDINATION OF AEROCOM MODEL EXPERIMENTS/ANALYSIS: CURRENTLY PROPOSED AEROCOM MODEL EXPERIMENTS AT-A-GLANCE

	1850	* 80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
HIST		-																																						Γ
ACRI																																								
UTLS																																								
VolcACI																																								
BB2																																								
CTRL																																								
InSitu-RH																																								
DUST_an																																								
OUST_dep																																								
ATom																																								
ORACLE																																								
Aircraft																																								
MMPPE																																								
TRAJ																																								
COARSE																																								
*Save eve	ery 10	year	s be	etwe	en 1	850	to 1	980	-					Red	quire	d	[Optic	onal														=						
HIST – hi site hygro Aircraft ([scopi	city e	expe	rime	nt (E	Bets	y/Pa	aul Z), D	UST	an	– ai	nthro	pog	jenic	: du	st (P	aul	G),	DÜS	ST_c	dep -	– du	st d	epos	sitio	n (H	ongt	oin),	ATo	m (ŀ	Huis								