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Aerosols in cloudy scenes: 
properties and impacts



Why study aerosols above clouds ?

AOT at 865 nm 

? 
Current operational aerosol retrievals from passive 
observations are restricted to cloud free scenes 
!  Reduce our ability to monitor aerosol 

properties and their effects at global scale 

Absorbing aerosols over clouds :  
!  may cause a large positive radiative forcing 

that is relatively unexplored (regional studies, 
e.g. : De Graaf et al., 2012) 

 
!  may affect the accuracy of the retrieval of cloud 

properties (Haywood et al., 1993) 
 
!  might affect the convection of the cloud below  



Why study aerosols above clouds ?"
direct aerosol effect on climate
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Perturbation of the albedo of a scene 
(Δρ) by a thin aerosol layer vs. the 
surface albedo 
(per unit of AOT) 
 
ϖ0 : aerosol single scattering albedo 
g   : asymmetry parameter 

∆ ρ = ρ − ρs = aot. ϖ 0.(1− g).(1− ρs )( 2
− 4.(1−ϖ 0 ).ρs ) (Lenoble et al., 1982) 
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Perturbation of the albedo of a scene 
(Δρ) by a thin aerosol layer vs. the 
surface albedo 
(per unit of AOT) 
 
ϖ0 : aerosol single scattering albedo 
g   : asymmetry parameter 

∆ ρ = ρ − ρs = aot. ϖ 0.(1− g).(1− ρs )( 2
− 4.(1−ϖ 0 ).ρs ) (Lenoble et al., 1982) 

Ocean and VGT |    Bare soil    |                   Cloud 
Absorbing aerosols above clouds 
can cause a reduction of the local 
planetary albedo = warming effect 



Why study aerosols above clouds ?"
cloud retrieved properties biases
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Nakajima and King (JAS, 1990) 
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above the cloud may lead to 
biases in COT and reff 
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Objectives

Demonstrate the ability of polarization 
measurements to detect aerosols above 
clouds  

Depict the variability of the properties 
of aerosols above clouds at global 
scale   



Sensitivity of polarized radiance to "
aerosol above clouds scenes
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Cloud + Biomass  
(AOT = 0.2) 

Cloud + Dust  
(AOT = 1.6) 

Cloud reff = 20 µm 

Cloud reff = 10 µm 

Polarized radiance at 865 nm : 
 
                   
(Q and U : Stokes parameters) 
Plane-parallel transfer radiative code (1D) 
 
 

Cloud: 
•  Presence of a cloud bow at ≈ 140° 
•  Range that doesn’t depend on COT for 

COT>3 
 
Cloud + Biomass (small spherical 
particles, reff = 0.1µm): 
Additional polarization at side scattering 
angle 
 
Cloud + Dust (coarse non-spherical 
particles , reff = 2.5 µm): 
Reduction of the polarization in the cloud 
bow 

Lp = ± Q2 +U 2



Processing

•  POLDER’s polarized radiances (670 and 865 nm) 
•   MODIS & POLDER’s cloud properties (reff, cloud top 

pressure, σCOT, σreff …) 
Input data 

•  Exact modeling with the Scattering Order of 
Scattering (SOS) code (1D) 

Simulated 
radiances 

•  6 spherical fine mode aerosol models (1.72<α<2.95) 
•  1 spheroid dust model (α=0.36) 
•  refractive index = 1.47 – i 0.01 

Aerosol models 

•  σCOT, σreff, cloud top pressure, final product quality … 
•  COT ≥ 3 
•  BTD8-11 ≤ -1.25 K 

 Filters 



 Global distribution of aerosols above clouds

Summer 2009 

0.0 0.3 0.15 0.2 2.4 1.3 

AOT at 865 nm ångström  



 Global distribution of aerosols above clouds 

Spring 2009 
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 Global distribution of aerosols above clouds 

Spring 2008 
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AOT at 865 nm ångström  

submitted manuscript: Waquet et al., GRL, 2013 



Aerosol absorption above clouds

Polarization is mostly sensitive to scattering process.  
 
The operational algorithm results are obtained under an assumption 
about the aerosol absorption (m = 1.47-0.01i). 
 
!  Soon, the estimation of the single scattering albedo ϖ0 will enable to 

correct the retrieved AOT above clouds. 



Aerosol absorption above clouds

AOT at 865 nm ångström 
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Thanks to the information about aerosol above clouds scattering, the total 
radiances at 490 and 865 nm from POLDER will lead to the evaluation of the 
aerosols absorption. 

Case study : biomass burning aerosols above clouds off the coast of Namibia. 
(04/08/2008 – preliminary results) 
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Case study : biomass burning aerosols above clouds off the coast of Namibia. 
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Dubovik et al. (JAS, 2002) 



Aerosol absorption above clouds

The method will also provide an estimation of the error upon the retrieved cloud 
optical thickness  (COT). 

Case study : biomass burning aerosols above clouds off the coast of Namibia. 
(04/08/2008 – preliminary results) 
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Conclusions and outlooks

Detection of aerosols above clouds 
•  Polarization has shown sensitivity to detect aerosols above clouds. 

 
•  It enables the discrimination between aerosols from the fine mode (mostly 

anthropogenic) and those from coarse mode. 
 

Global distribution of aerosols above clouds 
•  Taking into account aerosols above clouds increases the global AOT for 

the fine mode of ≈ 30% (cf. Waquet et al., GRL, 2013). 
 

•  ≈ 5 years of results from the operational algorithm (AOT and ångström) 
will be available from end of the year. 
(From 03/2005 to 12/2009) 



Conclusions and outlooks

Evaluate the aerosols absorption 
•  The estimation of the aerosols absorption will lead to the correction of the 

extinction AOT. 
 

•  It will also allow to evaluate the error on cloud properties that are currently 
retrieved. 
  

Constrain the direct radiative forcing 
•  Properties of aerosols above clouds may be used to constrain their direct 

radiative effect, 
•  as well as cloud corrected properties. 

contact : 
fanny.peers@ed.univ-lille1.fr 
fabien.waquet@univ-lille1.fr 


