

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Introduction Method Results

Summary and conclusions Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Z. Kipling P. Stier C. E. Johnson G. W. Mann N. Bellouin S. E. Bauer T. Bergman M. Chin T. Diehl S. J. Ghan T. Iversen A. Kirkevåg
H. Kokkola X. Liu G. Luo G. Myhre T. van Noije
K. J. Pringle K. von Salzen M. Schulz Ø. Seland T. Takemura K. Tsigaridis K. Zhang

25 September 2013

Introduction

- Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?
- Zak Kipling et al.
- Introduction
- Method
- Results
- Summary and conclusions

• Direct and indirect effects of aerosol depend on its vertical profile.

• Vertical profiles are relatively poorly constrained by observations.

• Considerable variation in vertical profiles between models.

Aims

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zak Kipling et al.

Introduction

Method

Results

Summary and conclusions

- Investivate the diversity of vertical profiles in the AeroCom Phase II models.
- Compare this with the variation in a single model (HadGEM3–UKCA) when each aerosol process is switched off.

• Assess whether differences in these processes might explain the inter-model diversity.

AeroCom models

Can the
inter-model
diversity of
aerosol
vertical
profiles be
explained by
specific
processes?

Zak Kipling et al.

Introductio

Method

AeroCom models HadGEM3–UKCA simulations

Results

Model	Туре	Reanalys	is	Resolution	Aerosol	Oxidants	Components
				$\delta \text{lat} \!\times\! \delta \text{lon} \!\times\! \text{levels}$			SS BC DU
CAM4–Oslo	GCM	free-runnii	ng	$1.9^{\circ} \times 2.5^{\circ} \times 26$	tagged	prescribed	ΥΥΥΥΥ
CAM5.1	GCM	free-runni	ng	$1.9^{\circ} \times 2.5^{\circ} \times 30$	modal (2m)	mixed	ΥΥΥΥΥ
CanAM4–PAM	GCM	free-runni	ng	$3.8^{\circ} \times 3.7^{\circ} \times 35$	pcwise-lgnrmal (2m)	prescribed	ΥΥΥΥΥ
ECHAM5-HAM	GCM	ERA-Int 20	006	$1.9^{\circ} \times 1.9^{\circ} \times 31$	modal (2m)	prescribed	ΥΥΥΥΥ
ECHAM5-SALSA	GCM	ERA-Int 20	006	$1.9^{\circ} \times 1.9^{\circ} \times 31$	sectional (2m)	prescribed	ΥΥΥΥΥ
EMAC	GCM	ERA-Int 20	006	$2.8^{\circ} \times 2.8^{\circ} \times 19$	modal (2m)	online	ΥΥΥΥΥ
GEOS-Chem	СТМ	GEOS-5 20	006	$2.0^{\circ} \times 2.5^{\circ} \times 47$	sectional (1m)	online	ΥΥΥΥΥ
GISS-MATRIX	GCM	NCEP 20	006	$2.0^{\circ} \times 2.5^{\circ} \times 40$	modal (2m QMOM)	online	ΥΥΥΥΥ
GISS-modelE	GCM	NCEP 20	006	$2.0^{\circ} \times 2.5^{\circ} \times 40$	modal (1m), except		ΥΥΥΥΥ
					DU: sectional (1m)		
GLOMAP-bin	СТМ	ERA-Int 20	006	$2.8^{\circ} \times 2.8^{\circ} \times 31$	sectional (2m)	prescribed	YYYY -
GLOMAP-mode	СТМ	ERA-Int 20	006	$2.8^{\circ} \times 2.8^{\circ} \times 31$	modal (2m)	prescribed	ΥΥΥΥΥ
GOCART	СТМ	GEOS-4 20	006	$2.0^{\circ} \times 2.5^{\circ} \times 30$	modal (1m), except SS, DU: sectional (1m)	prescribed	YYYmY
HadGEM2	GCM	ERA-Int 20	006	$1.3^{\circ} \times 1.9^{\circ} \times 38$	modal (1m), except	online	ΥΥΥΥΥ
					DU: sectional (1m)		
HadGEM3–UKCA	GCM	ERA-Int 20	006	$1.3^{\circ} \times 1.9^{\circ} \times 63$	modal (2m), except	online	ΥΥΥΥΥ
					DU: sectional (1m)		
INCA	GCM	IFS 20	006	$1.9^{\circ} \times 3.8^{\circ} \times 19$	modal (2m)	online	ΥΥΥΥΥ
OsloCTM2	СТМ	IFS 20	006	$2.8^{\circ} \times 2.8^{\circ} \times 60$	modal (1m), except	online	YYYYm
					SS, DU: sectional (1m)		
SPRINTARS	GCM	NCEP 20	006	$1.1^{\circ} \times 1.1^{\circ} \times 56$	modal (2m)	prescribed	ΥΥΥΥΥ
TM5	СТМ	ERA-Int 20	006	$2.0^{\circ} \times 3.0^{\circ} \times 34$	modal (2m)	online	ΥΥΥΥΥ

HadGEM3–UKCA simulations

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zak Kipling et al.

Introductior Method

HadGEM3–UKCA simulations

Results

Summary and conclusions BASE: xfxld standard configuration from 2011, nudged to ERA-Interim 2009, at N96L38 ($1.25^{\circ} \times 1.875^{\circ} \times 38$ levels), plus in-plume convective scavenging and GFED3 biomass-burning.

Emissions	Microphysics	Microphysics/chemistry			
BB_SURF	NO_COND	NO_WETOX			
BB_TROP/z	NO_COAG	AGE_INST			
EM_LARGE	NO_NUCL	AGE_NEVER			
EM_SMALL	WITH_BLN	NO_CLDPROC			

V . t	ransport
NO_	_BLMIX
NO_	_VADV
NO_	_CVTRANS

NO_DDEP NO_RAINOUT NO_LS_RO NO_WASHOUT NO_CV_RO WITH_REEVAP

Table: Model configurations and processes tested

Results: global-mean mass profiles (SO₄)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling et al.

Introduction

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Results: global-mean mass profiles (SS)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling

ng

Introduction

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Results: global-mean mass profiles (BC)

Can the inter-model diversity of vertical profiles be explained by specific processes? Zak Kipling et al.

Introductio

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Results: global-mean mass profiles (OA)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling

Introduction

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Results: global-mean mass profiles (DU)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling et al

Introduction

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Results: global-mean mass profiles (summary)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zak Kipling et al.

Introduction

Method

Results

Global-mean mass profiles

Zonal-mean vertical centre of mass

Summary and conclusions

Model	SO_4	BC	OA
ECHAM5–HAM	٠	٠	•
ECHAM–SALSA	•		
GISS-modelE		٠	٠
GOCART	•		
INCA	•	•	•
SPRINTARS	•	•	•

Table: Models exhibiting "inverted S"-shaped vertical profiles

Results: zonal-mean vertical centre-of-mass (SO₄)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling et al. Introduction Method Results

Zonal-mean vertical

centre of mass

Results: zonal-mean vertical centre-of-mass (SS)

Results: zonal-mean vertical centre-of-mass (BC)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling et al.

Results

profiles

Zonal-mean vertical centre of mass

Results: zonal-mean vertical centre-of-mass (OA)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zonal-mean vertical centre of mass

Results: zonal-mean vertical centre-of-mass (DU)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes? Zak Kipling et al.

Method

Results

Global-mean r profiles

Zonal-mean vertical centre of mass

Results: zonal-mean vertical centre-of-mass (summary)

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?
Zak Kipling et al.

method

Results

profiles

Zonal-mean vertical centre of mass

Summary an conclusions

Model	SO_4	BC	OA
CAM4–Oslo	•	•	•
CanAM4–PAM	•		
EMAC	•	•	•
GEOS–Chem	•	٠	٠
GISS-MATRIX			•
GISS-modelE	•		
GOCART		٠	٠
HadGEM2		٠	٠
HadGEM3–UKCA	•	٠	٠
TM5		•	•

Table: Models exhibiting flat (rather than U-shaped) meridional profiles of vertical centre-of-mass

Strongest effects on vertical profile

Can the
inter-model
diversity of
aerosol
vertical
profiles be
explained by
specific
processes?
Zak Kipling et al.

Zonal-mean vertical centre of mass

Summary and conclusions

Simulation	SO ₄	SS	вс	OA	DU
BB_TROP/z			↑	↑	
NO_BLMIX NO_CVTRANS	\uparrow	\downarrow	\downarrow	\downarrow	0
NO_COND	↑ ↑↑		\uparrow	\uparrow	
AGE_INST AGE_NEVER			\downarrow	\downarrow	
NO_DDEP					†⊥†
NO_LS_RO	\Downarrow	î⊥	\downarrow	\downarrow	
NO_CV_RO	\uparrow	↑	\uparrow	\uparrow	
NO_RAINOUT		↑	\uparrow	\uparrow	
NO_WASHOUT	Г				ţ,

↑,↓	Global shift up, down
1, ↓	Bigger shift up, down
t↑	At high latitudes
Â	Opposite at low/high
	latitudes

Table: HadGEM3–UKCA simulations showing the strongest change (compared to BASE) in zonal-mean vertical centre-of-mass

Summary and conclusions

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zak Kipling et al.

Introduction Method

- Overall spread of global-mean profiles can be accounted for by processes.
 - "Inverted S" seen in several models cannot be reproduced in HadGEM3–UKCA.
- Spread of zonal-mean vertical centre-of-mass larger than can be accounted for.
 - Also, "U" shape seen in several models cannot be reproduced.
- This suggests that there are structural differences in the models, beyond the processes considered here, which are important for the vertical profile.
 - Perhaps the parameterisation of convective entrainment and detrainment?

The End

Can the inter-model diversity of aerosol vertical profiles be explained by specific processes?

Zak Kipling et al.

Introductior Method

Results

Summary and conclusions

Any questions?