Global Fire Data-sets for Model Input

Johannes W. Kaiser

King's College London, European Centre for Medium-range Weather Forecasts, Max-Planck-Institute for Chemistry

Thanks to Niels Andela, Angelika Heil, Ronan Paugam, Martin G. Schultz, Guido R. van der Werf, Martin J. Wooster, Jean-Jacques Morcrette, Angela Benedetti and Samuel Remy!

AeroCom Workshop, Hamburg 25 September 2013

Smoke from Sumatran fires in Singapore in June 2013

AQ measurements at 12am on 21.6.2013 from http://app2.nea.gov.sg

PM2.5 Concentration (µg/m³)

graphics from http://www.copernicus-atmosphere.eu

9 June 2013 00UTC MACC Forecast t+003 VT: Wednesday 19 June 2013 03UTC ning Aerosols Optical Depth at 550 nm

Bottom-Up Estimation of Fire Emissions

3

FRP conversion factor analysis against GFEDv3

(adapted from Heil et al., ECMWF TM628, 2010)

Land-cover specific conversion is a combined approach.

- consistent with GFED3 inventory (within its accuracy)
- advantages
 - quantitative information
 - low detection threshold
 - real-time availability

Fig. 5. Average distribution of carbon combustion $[g(C) a^{-1} m^{-2}]$ during 2003–2008 in GFED3.1 (top) and GFASv1.0 (bottom). *(Kaiser et al. 2012)*

Biomass burning as a Go to page 1 major source of Aerosols

Van der Werf et al.

Introduction

Small fires

Satellite data on fires

Merging

Indonesia

Background WRF-Chem Results

Summary

Small fire fraction of total area burned

See Randerson et al. (2012) JGR-Biogeosciences

b

Biomass burning as a major source of Aerosols

Van der Werf et al.

Introduction

Small fires

Satellite data on fires

Merging

Indonesia

Background

WRF-Chem

Results

Summary

Increase in burned area and emissions due to small fires

Region	Burned area	Emissions		
Europe	111%	98%		
CONUS	75%	81%		
Indonesia	157%	55%		
Australia	7%	9%		
Globe	35%	35%		

Emissions based on the Global Fire Emissions Database (GFED) framework

Extreme Cases: Large Tundra and Peaty Soil Fires

2007 Anaktuvu River fire

- Mack et al. 2011
- 1039 km² of tundra burnt
- -2.1 ± 0.4 Tg C burnt
- ~annual net sink of Arctic tundra

GFASv1.0
– 1.7 Tg C burnt

• CO, Western Russia 2012

Table 1. Prior and Posterior Emissions. Emissions are given in Tg CO and have been integrated from 16 July 2010 up to 17 August 2010. Region R1 is defined from 35° E to 45° E, and from 53° N to 58° N, see Fig. 3 and Konovalov et al. (2011). Region R2 is defined from 30° E to 70° E, and from 46° N to 70° N, see Fig. 3.

Simulation	Prior R1	Poste R1	Prior R2	Poste R2
MERGED	1.06	6.82	6.5	26.6
MERIS	0.86	7.29	3.9	2T.V
GFAS	10.52	9.93	12.4	22.0
GFED3	0.63	10.06	2.0	22.3
MERGED-CLIM	1.06	5.26	0.3	22.6
MERGED-DAILY	1.06	5.98	6.5	25.1
MERGED-DIURNAL	1.06	6.62	6.5	26.9
MERGED-INFLATE	1.06	6.98	6.5	26.8

8

Krol et al. 2013

Validation of Aerosol Emissions: AOD(OM) + AOD(BC)

- assimilation of MODIS AOD
 - active: "analyses"
 - passive: "model"
- average of 15 Jul 31 Dec 2010
- AOD (OM+BC) low by mean factor 3.4
 - similar to other top-down estimates:
 - NASA (GFED2.2)
 - NRL (Reid et al. 2009)
 - aerosol inversions (Huneeus et al. 2012)
 - inconsistent with bottom-up estimates:
 - GFED2/3 (van der Werf et al. 2006/10)
 - published emission factors (e.g. Andreae & Merlet 2001)
 - INPE/CPTEC (Freitas et al. 2005)
- Petrenko et al. 2012: regional variability
- recommendations:
 - correct emissions by factor 3.4
 - do multi-parameter analysis

Comparison to other inventories: Monthly CO emissions

Derive enhancement factor geographically dependently:

QFED Tuning

- GFED emissions led to anemic biomass burning AOT in model
- QFED I had global (per species) tuning of satellite fire product to GFED emissions; also led to low AOT in model
- QFED2 is tuned per biome and species via simulations w/ and w/out specific biome biomass burning emissions and analyzed regionally

Biome	С	
Tropical Forest	2.5	
xTropical Forest	4.5	
Savanna	1.8	
Grassland	1.8	
Tuning polative t	OFEDI	

runing relative to QFEDT

NRT production of daily FRP and Emissions

- GFASv1.0
 - MODIS FRP assimilation
 - ~50 km resolution
 - 1 Jan 2003—yesterday

- <u>GFASv1.1</u>
 - MODIS FRP assimilation
 - ~10 km resolution
 - 1 Jan 2005—yesterday

Daily GFAS used by blobal pre-operational smoke aerosol forecasting in MACC and at MRI-JMA

Open # on this page in a new tab behind the current one

Where is the July 2012 Seattle haze coming from?

MACC-II has estimated that the global amount of biomass burnt last June was the highest of the past decade, with wildfires particularly acute in boreal forests in North-America and Asia.

Independent validation against CALIPSO

Model (fnyp) aerosol amount and cloud fraction along 9194 km of A-Train orbit between 10:36:45 & 10:59:09 07/07/12 UT

Benefit of high resolution

MACC already runs forecasts at high resolution with simplified chemistry for CO. This provides better forecasts in areas with complicated orography.

- Workshops in 2009 and 2012 (ESF and IGAC-iLEAPS-WMO) found **advances** in biomass burning research **since** the 1990s and **BIBEX**:
- modelling: fire spread, plume rise, global operations
- satellite observations of fires and atmospheric smoke plumes

But research has also become fragmented.

- New IBBI aims to bring the various communities and new developments together to the improve physical understanding and modelling capabilities of biomass burning.
- next workshop in Schloss Ringberg on 23–26 April 2014
- Atm. Env. plans special issue with IBBI.
- co-chaired by Melita Keywood & Johannes Kaiser
- http://www.mpic.de/projekte/ibbi.html

Some Conclusions

- FRP-based BB emissions as mature as any other
 - and more sensitive to small fires than BA-based ones.
 - GFAS is freely available 2003 real time.
- Bottom-up <u>aerosol</u> emission inventories need enhancement.
 - I don't know why.
 - The BB comparison is very timely!
- Other research topics
 - Injection heights
 - diurnal variability
 - resolution
 - gas flaring
 - residential burning
 - CCN
 - BC-OC

GFAS injection heights beta (R. Paugam, S. Remy) 4% of Aqua fires emit >50% above PBL in Jun/Jul 2043

Max FRP of day fires w. >50.0% emis. above BL

100

1000

Some global biomass burning inventories

						retrospectivel		fire/veg.
Name	Ref.	satellite era	real time	BA-based	hot spot-based	FRP-based y	reports	modelling
	wan dar Marf at al							
GFED3	2010	1997-		yes				
GFED4		1997-		yes	yes			
FLAMBE	Freitas et al. 2005 Wiedinmyer et al.		yes		yes			
FINN	2010	2005-	yes		yes			
QFED2			yes			yes		
GFAS1	Kaiser et al. 2009/2012	2003-	yes			yes		
IS4FIRES	Sofiev et al. 2009		yes			yes		
GICC	Mieville et al. 2010				yes	1900-2005	yes	
RETRO	Schultz et al. 2008					1960-2000)	yes
	Ito & Penner 2005					1870-2000)	

BA-based

- no cloud cover
- high spatial resolution

FRP-based

- small fires
- real time
- diurnal cycle
- stability for extreme events (Tundra, Russia, Greece)

- hybrids using hot spots
 - high temporal resolution
 - small fires
- both consistent

gas flares

Interdisciplinary Biomass **Burning Initiative**

Some scientific challenges

- discrepancy between top-down and bottom-up aerosol emission estimates
- multi-species inversions
- combining information from comprehensive fire and smoke observations
- variability of emission factors
- injection heights, pyro-convection, in-plume chemistry

Observational FRP Coverage

- average number of observations
 - damped for large VA
- of any area in 0.5 deg grid cell

[Kaiser et al. 2011]

FRP production in MACC

Key Features

satellite-based FRP assimilation :

- global coverage
- NRT availability
- daily resolution (tests: hourly)
- similar maturity as BA approach

MACC-GFAS:

- publicly available in several data servers
- various product formats:
 - GRIB
 - NetCDF
 - GIF map
 - PNG spaghetti plot
 - KML

http://gmes-atmosphere.eu/fire

Various types

- Bottom-up (from satellite obs. of fires)
 - burnt area or fire radiative power
 - real time or retrospectively
- Top-down (inversion)
 - inversion of observed PM or AOD
 - inversion of CO
 - combine with bottom-up
- emission factors
- diurnal cycle, injection height
- residential burning, gas flares, daily resolution, CCN