

Proudly Operated by Battelle Since 1965

Constraining Estimates of Aerosol Effects on Clouds

Steven Ghan and Minghuai Wang: Pacific Northwest National Laboratory

Kentaroh Suzuki: Jet Propulsion Laboratory

Published estimates of aerosol

indirect forcing of the aerosol indirect effect

Increases in liquid water path (LWP). 3.9% in the MMF vs. 15.6% in CAM5

The response in LWP to a given CCN perturbation in CAM5 is about 3 times that in the MMF.

The Multi-scale Modeling Framework Pacific Northwest NATIONAL LABORATO Proudly Operated by Battelle Since 1965 (MMF) approach and the PNNL-MMF (an aerosol-MMF) CAM5 with modal aerosols Two-moment microphysics CRM MMF ECPP **PNNL-MMF** Wang et al., 2011a, *GMD*; 2011b, ACP

CRM cloud/precipitation statistics used for cloud processing of aerosols

Probability of Precipitation (POP) for warm clouds

Probability of precipitation (POP) for warm clouds

The POP dependence on aerosol loading in MMF is weaker and agrees better with satellite observations

POP in CAM5: non-microphysical factor Sud by Battelle Since 1963

Non-microphysical effects (e.g., wet scavenging) play a minor role on the POP dependence on aerosol loading in CAM5.

-dinpop/dinAl: A quantitative measure outly Operated by Battelle Since 1965

LWP-weighted:

Obs: 0.12; MMF: 0.42; CAM5: 1.06

dlnPOP/dlnAl provides a good

Pacific Northwest

Proudly Operated by Battelle Since 1965

CAM5 tests change treatment of autoconversion Intercept of regression with $S_{pop}=0.12$ suggests $\lambda=0.04$

Proudly Operated by Battelle Since 1965

Expressing indirect forcing in terms of liquid water path sensitivity

Intercept is first aerosol indirect effect

 Value at λ=0.04 provides estimate of indirect forcing given change in CCN

Liquid water response is closely related to role of autoconversion in precipitation

Proudly Operated by Battelle Since 1965

Small role of autoconversion in MMF might be due to prognostic precipitation

Wang, M., S. Ghan, X. Liu, L'Ecuyer, K. Zhang, H. Morrison, M. Ovchinnikov, R. Easter, R. Marchand, D. Chand, Y. Qian, and J. E. Penner, Constraining cloud lifetime effects of aerosol using A-Train satellite observations, *GRL*, 2012.)

Contoured Frequency by Optical Depth Diagram

Suzuki et al., in preparation

Distinguishing Direct and Indirect Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965 Effects

- Estimating indirect effects I
- Easy method: I= ΔC
- where C=F-F_{clear} shortwave cloud radiative forcing
- But if total aerosol forcing T= Δ F is direct D + I,
- this implies $D=\Delta F_{clear}$

which we know is biased toward cooling because over a dark surface

- it overestimates cooling by scattering
- it underestimates warming by absorption

A More Representative Estimate

D= Δ (F-F_{clean}) where F_{clean}=F diagnosed w/o aerosol I= Δ (F_{clean}-F_{clear,clean})= Δ C_{clean} includes semi-direct effects

Total aerosol forcing T= Δ F=D+I+S where S= Δ F_{clear,clean} surface albedo forcing

Ghan, ACPD, 2013

CAM5 Results

Indirect Effects Diagnostic Requirements

- ► F_{clean} aerosol set to zero for diagnostic radiation
- ► F_{clear,clean} aerosol & cloud set to zero for diagnostic radiation

Summary

- S_{pop} has been demonstrated to be a good measure of LWP response to CCN perturbation and provides a way to use observations to constrain cloud lifetime effects of aerosols in global climate models
- S_{pop} from A-Train observations is substantially smaller than that from global climate models, and suggests a LWP increase less than 5% from doubled CCN concentrations
- We are applying the S_{pop} metric to examine cloud lifetime effects of aerosols in other AeroCom models
- Aerosol effects on clouds are most consistently estimated using the diagnosed change in cloud forcing with aerosol absorption and scattering of solar radiation neglected

Proudly Operated by Battelle Since 1965

Cloud Lifetime Effects of Aerosols First Results

Steven Ghan, Minghuai Wang: Pacific Northwest National Laboratory David Neubauer, Ulrike Lohmann, Sylvaine Ferrachat: ETH Toshihiko Takemura: Kyushu University

Proudly Operated by Battelle Since 1965

Objectives and Approach

Objectives:

- Use S_{pop} metric to evaluate and constrain cloud lifetime effects of aerosols in other global aerosol-climate models, especially those used in CMIP5
- Understand the spread of simulated cloud lifetime effects of aerosols in those models
- Approach:
 - Use satellite observations to evaluate simulated aerosol-cloudprecipitations
 - Examine microphysical process rates to understand the model spread of cloud lifetime effects of aerosols

Extending Penner et al. (2006) and Quaas et al. (2009)

- Precipitation observations along with coincident aerosol and clouds observations from A-Train and ground/aircraft observations are used to evaluate model results
- λ=dLWP/dInCCN is used to separate differences of aerosol loading from differences in cloud lifetime effects
- S_{pop} and microphysical rates provide new tools to understand the model spread of cloud lifetime effects and further to help to provide constraints

Experimental setup

- Model runs: prescribed-SST with winds and temperature nudged to ECMWF analysis 2006-2010
 - > PD: present day aerosol (and precursor) emissions
 - > PI: 1850 aerosol (and precursor) emissions

Model output:

- Monthly mean and 3-hourly instantaneous fields: F, F_{clean}, F_{clear,clean}, N_d, LWP, r_e, CCN, AOD, AI,, liquid cloud cover, column-integrated autoconversion and accretion rates, stratiform precipitation rate, T_{cld}, LTSS (all averaged over the entire grid cell)
- 3-hourly Cloud Frequency by Altitude Diagram (CFAD) CFMIP COSP Diagnostic

Participation

Model	Investigators	Organization
CAM5	Ghan, Wang, Zhang	PNNL
ECHAM6	Neubauer, Lohmann, Ferrachat	ETH
SPRINTARS	Takemura	Kyushu U.
SPCAM	Wang, Ghan	PNNL
UKCA	Stier, Partirdge, Bellouin	Oxford U., U. Reading
IMPACT	Penner	U. Michigan
AM3	Ming, Yun	GFDL
GEOS5	Barahona, Nenes	GSFC
CAM4-Oslo/ NorESM	Kristjansson, Storelvmo, Kirkevåg, Iversen	U. Oslo
GISS ModelE	Bauer, Ban-Weiss	GISS, USC
CAM5-APM	Yu	SUNY-Albany

Forcing Decomposition by ECHAM6

Solar Forcing Decomposition

Global means (PD-PI) (PD is in parenthesis)

	CAM5.3-PNNL	ECHAM6-ETH	SPRINTARS
AOD	0.017	0.017	0.020
	(0.125)	(0.123)	(0.089)
CDNUM	0.35	0.42	0.29
(#1.0e10/m2)	(1.52)	(3.07)	(4.12)
LWP (g/m2)	4	5	1
	(37)	(78)	(105)
SWCF (W/m2)	1.37	1.34	0.50
	(53.1)	(46.1)	(47.8)
LWCF (W/m2)	0.14	0.88	0.067
	(19.4)	(23.1)	(20.2)
SPRECIP	-0.009	0.000	-0.003
(mm/day)	(0.89)	(1.31)	(1.29)

Anthropogenic aerosol effects on LWP

Change in Al from anthropogenic aerosols NATIONAL LABORATORY (AI=AODxANGSTRM)

POP for warm clouds over global oceans

S_{pop} from LWP sampled before and after microphysics (NCAR CAM5.3)

S_{pop} vs. λ with new model results

λ is defined as
Old results:
dln(LWP)dln(CCN)
New results:
dln(LWP)/dln(AI)

dln(LWP): (PD-PI)/PI dln(CCN): (PD-PI)/PI dln(AI): (PD-PI)/PI

ECHAM6 ★ SPRINTARS & CAM5.3 O

Nudging Impact on Forcing

- Nudging toward ECMWF temperature affects CAM5 convection and LWP&IWP
- LWP&IWP changes affect SWCF and LWCF response to aerosol

Nudging

No Nudging

Summary

- Our preliminary results confirm that S_{pop} is a good measure of LWP response to aerosol perturbation.
- SPRINTARS simulates much smaller S_{pop} than NCAR CAM5.3 and ECHAM6, consistent with its much smaller LWP response to anthropogenic aerosols (1% in SPRINTARS vs. 7% in ECHAM6 and 11% in NCAR CAM5.3)
- Our preliminary analysis also reveal some potential issues and points further refinement in experiment design and data submission

Interested? Contact Steve Ghan (<u>Steve.Ghan@pnnl.gov</u>)

Proudly Operated by Battelle Since 1965

Filenames:

- "aerocom_<ModelName>_<ExperimentName>_<VariableName>_<Vertic alCoordinateType>_<Period>_<Frequency>.nc"
- details at <u>https://wiki.met.no/aerocom/indirect</u>
- Additional diagnostics: Monthly AI (aerosol index), CCN at multiple S (0.1% and 0.3%), geopotential height, air density
- CCN grid cell mean, whether cloud present or not. Surface or cloud base?
- LWP before or after microphysics?
- Nudge toward analysis or a model baseline?
- CFAD or CFOD?