Biomass Burning aerosol emissions: A Proposal for AEROCOM BB Experiment

Mariya Petrenko (NASA GSFC/ORAU, USA), <u>mariya.m.petrenko@nasa.gov</u> Maria Val Martin (Colorado State University, Fort Collins, USA), <u>mval@atmos.colostate.edu</u> Mian Chin (NASA GSFC, USA), <u>mian.chin@nasa.gov</u> Ralph Kahn (NASA GSFC, USA), <u>ralph.kahn@nasa.gov</u>

Satellite AOD snapshots to constrain Biomass Burning Emissions Source Strength

MODIS-GoCART Total Column AOD Comparisons

Sample Case: Siberia July 20 2006

3-hourly output

Resolution: 1°(lat) x 1.25°(lon) x 30 vert. layers

Meteorological fields GEOS DAS Version 4

Emissions include: dust, sea salt, anthropogenic, sulfate & precursors, BB

13 BB emission options in separate model runs

Study period: June 2006-June 2007

Ratio of GOCART to MODIS average AOD For each case, for 12 emission estimates

MCD45-CCi-GOCART

GFED3m-GOCART

mod1-CCm-GOCART

MCD45-CCm-GOCART

GFED3d-GOCART

mod1-GLC-GLC

MCD45-GLC-GOCART

MCD45-GLC-GLC

GFED3d

GFED2m-GOCART

Systematic regional patterns; some emissions work better in certain regions

	Ratio	of	GOCART	average	AOD	to MO	DIS a	average	AOD		
0.00	0.33	(0.50	0.625	0.83	1.	20	1.60	2.00	3.00	10.65

N. America Plume Injection Height Climatology

Val Martin et al. ACP 2010

Evaluation of a 1D plume-rise model: Towards a parameterization of smoke *injection heights*

1-D Plume-rise model heights vs. MISR-observed max. plume heights
-- Plume-rise calculations have *lower dynamic range than observed*, but very variable

Val Martin et al., JGR 2012

Evaluation of a 1D plume-rise model:

Towards a parameterization of smoke injection heights

Val Martin et al., JGR 2012

Motivation for the AeroCom BB Experiment AOD

• We have a substantial set of **satellite** wildfire plume AOD snapshots and injection heights to help calibrate model/inventory performance

• We are: (1) adding *more fire sourcestrength cases,* (2) using MISR to *improve the AOD constraints* and (3) adding **2008 global injection heights**

 We selected *GFED3-daily* due to good overall source strength performance, but *any inventory can be tested*

 Need a joint effort, to test multiple, global models to draw robust BB injection height & emission strength conclusions

Objectives

- Inter-compare & quantify model BB AOD accuracy and diversity
- Propose *regional emission corrections* -- improve the widely used GFEDv3 emissions
- Test global model smoke *injection height emission intensity relationships*

We are offering:

Satellite-based smoke plume AOD and injection height climatologies

Satellite Constraints

- Benchmark year: 2008
- MODIS AOD for pre-selected smoke plumes in different biomass burning regions
- MISR 2008 global BB plume height currently being retrieved at JPL and GSFC

<u>Model Study period:</u>

January 1 – December 31 2008, preceded by a few months spin-up.

Experiment Design

	Exp.	BB emission	BB emission	Injection height
		Option 1	Option 2	
	BB0			No BB emission
Control —	→ BB1	GFED v3	GFED v3	Boundary layer
	BB2	GFED v3 x 0.7	GFED v3 x 0.5	Boundary layer
	BB3	GFED v3 x 5	GFED v3 x 2	Boundary layer
	BB6		GFED v3 x 4	Boundary layer
	BB4	GFED v3	GFED v3 x 0.5	Val Martin
	BB5	GFED v3 x 5	GFED v3 x 2	Val Martin
	BB7		GFED v3 x 4	Val Martin

Requested output:

2-D, 3-hourly, instantaneous

- Total column 550 nm AOD
- Biomass burning AOD, if available (or AOD's of individual aerosol species)
- *Wind speeds* in the middle of emission injection height [e.g., if all smoke is distributed within PBL, output mid-PBL winds]
- PBL height

3-D [3-hourly]

- Aerosol species concentrations
- Aerosol 550 nm extinction

With *Source Strength* Perturbation Factors: 0.7, 1, 3 & 5

GOCART GFED3x0.7

General Timeline

- AeroCom Meeting: Discuss & refine experiment plan
- *Early 2014:* Finalizing reference datasets
- Early 2014: Set up model simulations
- 30 June 2014: Submit model outputs
- July-September 2014: Preliminary model analysis
- Fall 2014: AeroCom presentation & feedback
- *Mid-2015:* Finalize analysis, manuscript preparation