School of Earth and Environment

Proposal for AEROCOM joint experiments on aerosol perturbations and uncertainty analysis

Ken Carslaw and Lindsay Lee *University of Leeds* Philip Stier *University of Oxford* Michael Schulz

NILU

There are two aspects to this proposal:

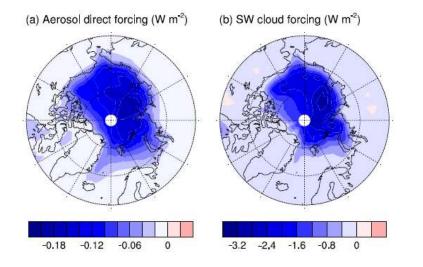
- 1. Quantifying the <u>response</u> (sensitivity) of aerosol and radiative effects to realistic perturbations in single emissions
- 2. Understanding and comparing the <u>sources of uncertainty</u> through multi-parameter process perturbations, emulation and uncertainty analysis

Most aerosol model evaluation focuses on the *state* of aerosol

- It is the <u>response of the model to perturbations</u> that determines the radiative forcing and initiates Earth system feedbacks
- The magnitude and causes of diversity in models states and responses may differ
- There are model factors that could cause large differences in states (e.g. wet removal) but which might not so strongly affect response
- Good agreement of model states may hide differences in response

Author	Effect	Effects	Model
Rap et al. (2013)	- 0.2 Wm ⁻²	First indirect for +25% ΔDMS	GLOMAP-mode
Six et al. (2013)	- 0.64 Wm ⁻²	All ACI for +25% Δ DMS	ECHAM5-HAM
Thomas et al. (2010)	- 2.0 Wm ⁻²	All sky for +100% ΔDMS	ECHAM5- HAMMOZ
Woodhouse et al. (2010)	<0.1% \triangle CCN for 1% \triangle DMS	CCN	GLOMAP-bin

Different responses due to differences in baseline aerosol, spatial DMS patterns, nucleation/growth/cloud-processing


Author	Cloud forcing	Effects	Model
Rap et al. (2013)	- 0.02 Wm ⁻²	First indirect	GLOMAP-mode
Goto et al. (2008)	- 0.19 Wm ⁻²	All effects	SPRINTARS
O'Donnel et al. (2011)	+ 0.20 Wm ⁻²	All effects	ECHAM5-HAM
Scott et al. (2013)	- 0.02 to -0.7 Wm ⁻²	First indirect	GLOMAP-mode

Different responses of CCN due to competing effects of nuclei growth, organic-controlled nucleation, and changes in condensation sink.

Different BVOC emission distributions

Example of responses: Arctic sea ice loss

Effect of complete loss of sea ice

Fig. 15. Comparison of the average JJA modeled TOA natural aerosol direct radiative forcing and first natural aerosol indirect effect derived from the difference be **ASEA SPRAV**

Struthers et al. (2010): large

<u>increase</u> in aerosol -> large direct and indirect forcing

Browse et al. (2013): small <u>decrease</u> in aerosol because of interaction with scavenging

Change in surface (0-50m) CCN number (Rccn>35nm)

Anecdotal: Addition of more soluble material (sulfate, SOA etc) decreases the lifetime of BC, causing large changes in remote BC concentrations and deposition

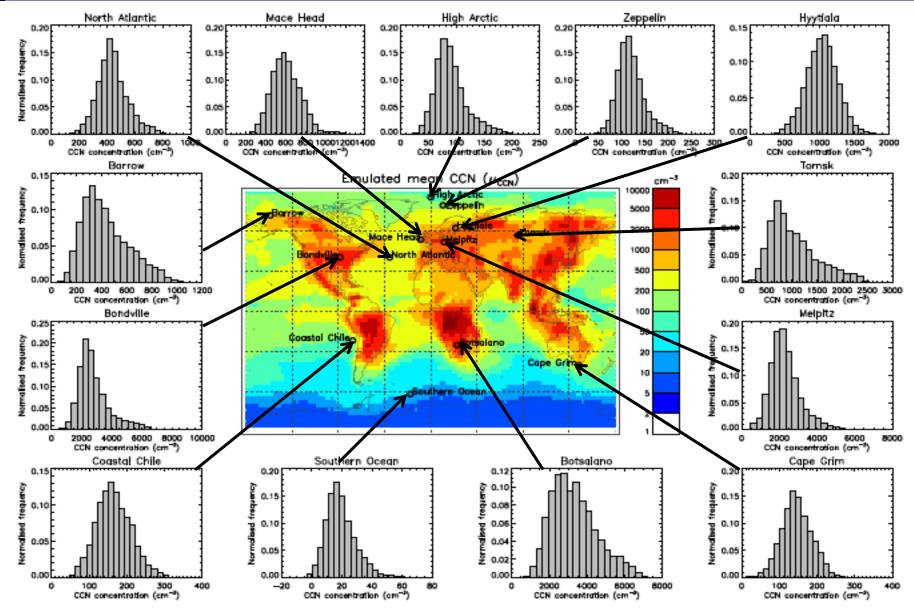
Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters

L. A. Lee, K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen

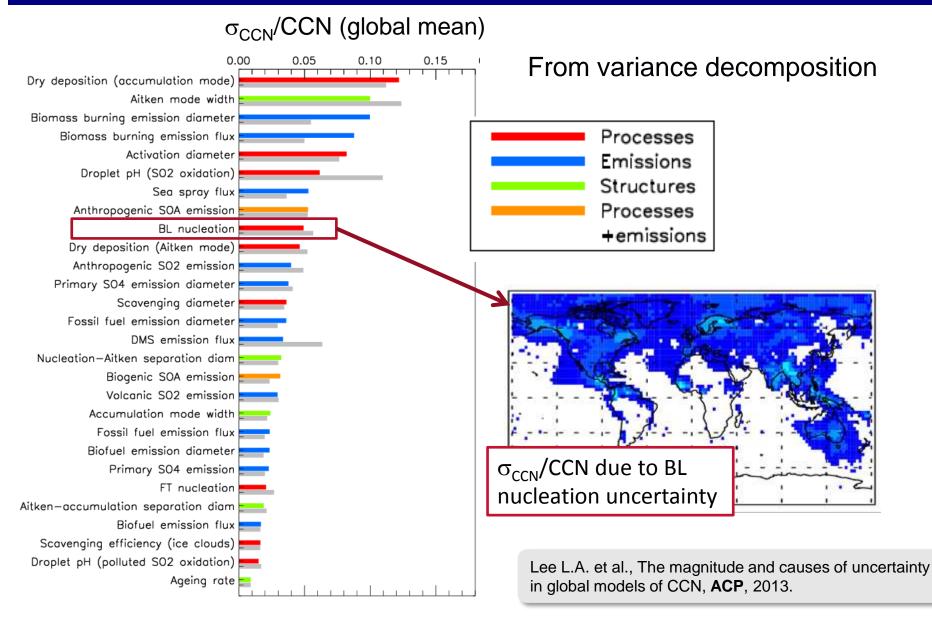
Atmos. Chem. Phys., 11, 12253-12273, 2011

Mapping the uncertainty in global CCN using emulation

L. A. Lee, K. S. Carslaw, K. J. Pringle, and G. W. Mann


Atmos. Chem. Phys., 12, 9739–9751, 2012

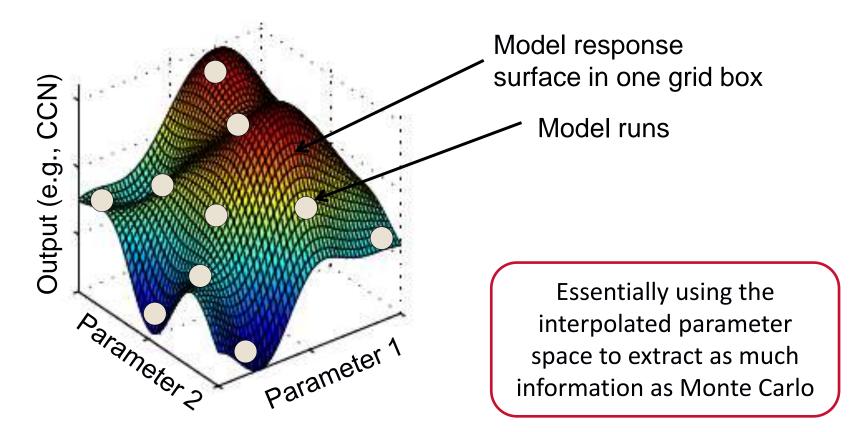
The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei


L. A Lee, K. J. Pringle, C. L. Reddington, G.W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K.S. Carslaw

Atmos. Chem. Phys., 13, 8879-8914, 2013

PDFs of CCN concentration due to uncertainty in 28 parameters

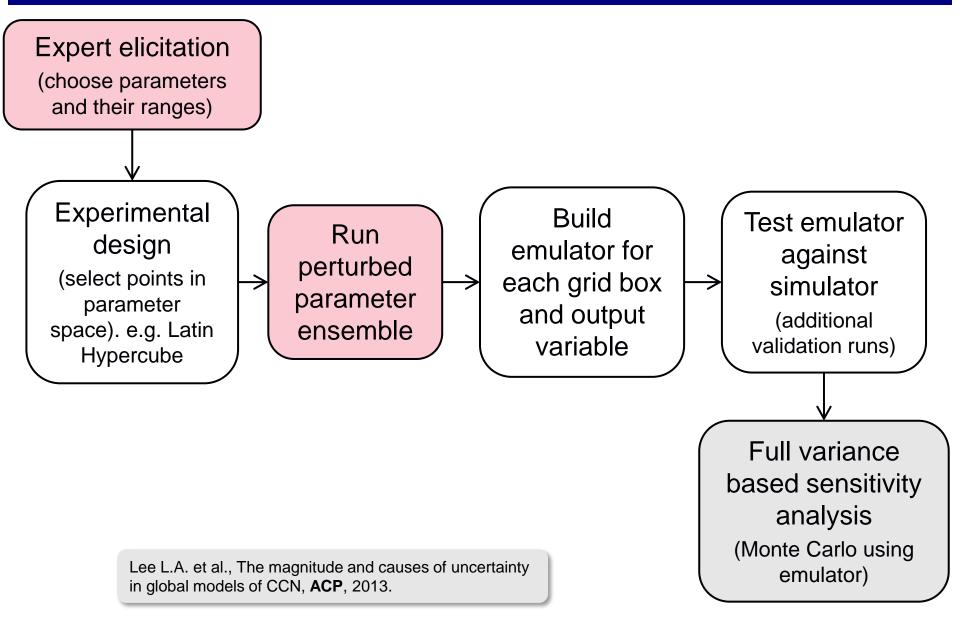
Sources of CCN uncertainty in GLOMAP



Sources of model uncertainty at one site

Model interquartile Fraction of variance due range and 9th /91st to each process from confidence intervals N50 Hyytiala, Finland variance decomposition of from Monte Carlo pdf the Monte Carlo sampling 1500 1000 N50 500 0 100 DRYDEP_AER_ACC ANTH_SOA % of N50 variance 80 **BIO_SOA** ANTH_SO2 PRIM_SO4_DIAM 60 FF_DIAM S0203_CLEAN AIT_WIDTH 40 FT_NUC **BL_NUC** 20 0 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Lee L.A. et al., The magnitude and causes of uncertainty in global models of CCN, **ACP**, 2013.


Using emulators to enable Monte Carlo simulations

Oakley, J. and O'Hagan, A.: Probabilistic sensitivity analysis of complex models: a Bayesian approach, J. Roy. Stat. Soc. B, 66, 751–769, 2004.

Lee, L.A. et al., Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters, ACP 2011.

An AEROCOM multi-model parametric uncertainty analysis

UNIVERSITY OF I