

Aerosol typing and microphysical properties from advanced lidar/radiometer observations

Ulla Wandinger

Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

with many contributions from the TROPOS Ground-Based Remote-Sensing Group and the ACTRIS-EARLINET Consortium

Outline

- Towards ACTRIS supersites
- Aerosol typing from lidar optical data
- Microphysical retrievals from combined lidar/sun photometer data

Aerosol Remote Sensing With Lidar

EARLI09 Leipzig 2009

EARLINET multiwavelength Raman Lidar

- particle backscatter coef. (355, 532, 1064 nm)
- particle extinction coef. (355, 532 nm)
- lidar ratio (355, 532 nm)
- Angström exponent (355/532 nm, height-res.)
- particle depolarization ratio (532 nm)
- water-vapor mixing ratio
- temperature
- + scattering model:
- particle mean size, volume concentration, refractive index (height-resolved)

Continuous observations – Raman Lidar Polly^{XT}

- 1: roof cover
- 2: sensors for outdoor temperature, air pressure, and rai
- 3: aircondition
- 4: uninterruptible power supply,
- 5: computer with data acquisition
- 6: laser power supply
- 7: laser head
- 8: beam expander
- 9: receiver telescope
- 10: receiver with seven channels

Continuous observations: AERONET and EARLINET

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

ACTRIS

Aerosol, Clouds and Trace gases Research Infrastructure Network

Ground-based remote sensing

EARLINET: ~27 aerosol lidar stations 3+2 Raman lidars (aerosol typing, microphysics) Raman lidars (extinction profiles) backscatter lidars

CLOUDNET: ~10 cloud radar stations

EARLINET- AERONET: ~17 stations and 3 calibration sites

Ground-based in-situ observations

- about 30 ground-based stations for in-situ measurements of chemical, physical and optical properties of aerosols (former EUSAAR)
- about 20 ground-based stations for monitoring short-lived trace gases

ACTRIS @ TROPOS

ACTRIS supersite @ Melpitz

In-situ aerosol and cloud microphysics

In-situ aerosol and cloud microphysics

CLOUDNET – EARLINET integration

Lidar 3λ

Lidar δ

CLOUDNET – EARLINET integration

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

Optical properties from lidar

Extensive optical parameters (concentration-dependent)

Backscatter coefficients: β (355, 532, 710, 1064 nm) Extinction coefficients: α (355, 532 nm)

Intensive optical parameters (type-dependent)

Lidar ratio: S (355, 532 nm) size, shape, refractive index

Depolarization ratio: δ (355, **532**, 710, 1064 nm) shape, (size, refractive index)

Ångström exponents backscatter-related: *å*(532/1064), *å*(355/532) extinction-related: *å*(355/532)

size, (refractive index)

$$S = \frac{\alpha}{\beta} = \frac{4\pi}{\omega_0 P_{11}(180^\circ)}$$

$$\delta = \frac{\beta^{\perp}}{\beta^{\Box}} = \frac{P_{11}(180^{\circ}) - P_{22}(180^{\circ})}{P_{11}(180^{\circ}) + P_{22}(180^{\circ})}$$

$$\mathbf{\mathring{a}}_{x} = -\frac{\ln[\mathbf{x}(\lambda_{1}) / \mathbf{x}(\lambda_{2})]}{\ln(\lambda_{1} / \lambda_{2})}$$

Aerosol typing from optical parameters

Polluted continental Biomass burning

Clean marine

Size:	Ångström Exponent, Lidar ratio		
 å > 1	å = 0	å = 0	$\overline{\langle}$
Absorptio	n: Lidar ratio		
S > 60 sr	S = 55 sr	S = 25 sr	
Shape:	Depolarization ratio		
 δ = 0.05	δ = 0.31	δ = 0.02	$\overline{\langle}$

Example: PBL aerosol, LE, 17 July 2013

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

Example: PBL aerosol, LE, 17 July 2013

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

CTRIS

TROPOS

CTRIS

 $Ang_{d355/532} = -0.1$

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

A©TRIS

TROPOS

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

TRIS

MODIS firemaps, 1 June to 25 July 2013

Aerosol typing – EarthCARE observables

Aerosol classification from measurements of lidar ratio and particle linear depolarization ratio at **355 nm**

Measurements from EARLINET, SAMUM-1/2, Polarstern, Amazonia; TROPOS and MIM

Multiwavelength Raman polarization lidar (EARLINET)

Characterization/typing of aerosols

Quantification

Optical, microphysical, and radiative properties

Source identification, transport

- ➔ Vertically resolved
- → Limited microphysical characterization, and daytime capabilities

Sunphotometer observations (AERONET)

Identification of aerosols

Characterization/typing of aerosols

Quantification

Optical, microphyisical, and radiative properties

Restricted to columnar properties, daytime, cloud-free scenes only

Combining lidar and sunphotometer observations

Lidar/sun photometer integrated algorithms

Generalized Aerosol Retrieval from Radiometer and LIdar Combined data

Lidar/Radiometer Inversion Code

Laboratoire d'Optique Atmosphérique, Lille (O. Dubovik)

Institute of Physics of the National Academy of Science of Belarus, Minsk (A. Chaikovsky)

Smoke event: GARRLIC versus LIRIC

Smoke event, Minsk, 13 August 2010

Altitude, km

ACTRIS

TROPOS

GARRLIC: Improved columnar products

Smoke event, Minsk, 13 August 2010

ACTRIS

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

Lopatin, A., et al., AMT, 2013

GARRLIC: Single scattering albedo

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

LIRIC and DREAM: Athens, 20 July 2011

BSC-DREAM8b model vs. LIRIC combined lidar-sunphotometer retrieval

Tsekeri, A., et al.: Application of a synergetic lidar and sunphotometer algorithm for the characterization of a dust event over Athens, Greece, British Journal of Environment and Climate Change (accepted)

LIRIC and DREAM: Granada, 27 June 2011

AeroCom/ACTRIS Workshop, Hamburg, 26 September 2013

TRIS

Summary

- 1) Lidar (multiwavelength, Raman, polarization) for vertically resolved characterization of aerosols
- 2) Lidar + sunphotometer for improved microphysical retrievals
- 3) Towards integration of aerosol and cloud observations (EARLINET/AERONET/CLOUDNET)
- 4) Towards continuous 24/7 atmospheric observations
- 5) Towards networks for covering the regional and global variability and for long-term observations
- ➔ Advanced datasets for model evaluation and data assimilation

