Clouds, climate, challenges

Herman Russchenberg

Remote Sensing of the Atmosphere

Clouds and climate

Clouds absorb heat

Possible cloud responses to warming

Optical depth = total extinction of radiation due to absorption and scattering

Example of broadband sw fluxes

Global warming: state of the art

Greenland melt, July 2012

Impact of thin low level clouds on surface temperature

TUDelft

Bennartz et al, 2013, Nature

The cloud questions

A bit about cloud formation

City effect on winter precipitation?

Analysis of 17 years of weather radar data

Fabry et al, AMS Radar conference 2013

Cesar Observatory

Delft University of Technology, KNMI, Wageningen University and Research Utrecht University, RIVM, ECN, TNO, European Space Agency

Assume a cloud model

Inside stratocumulus

estimate cloud parameters

Droplet concentration

Profile particle size

Courtesy: Christine Brandau

radiative properties

Extinction

Optical thickness

TUDelft

What about the link with aerosols?

- Lidar extinction coefficient was measured 300 m below the cloud base
- Radar reflectivity and cloud droplet effective radius were measured 100 m above the cloud base
- Radar range is 90 m (we need better resolution!)
- Extinction range is 15 m for these preliminary results it was integrated over 6 bins

2012 - 12 - 16

TUDelft

TUDelft

Extinction vs. Radar Reflectivity (In scale)

for the whole cloud

TUDelft

More aerosol exctinction: Stronger radar reflection

Extinction vs. Radar reflectivity for different time intervals

• from 19:00 to 19:05

• from 19:30 to 20:00

• from 19:00 to 20:00

TUDelft

Extinction vs. Radar Reflectivity for smaller LWP intervals (In scale)

• for LWP 85 – 95 g/m³

for LWP 96 – 105 g/m³

• for LWP 116 – 125 g/m³

3.1

3∟ -14

-13

-12

-11

In [extinction coefficient]

-10

-9

-8

Lidar extinction vs. Radar reflectivity

• updrafts

downdrafts

The effect seems(!!) a bit stronger in updrafts

Sources Anthropogenic vs natural aerosol Back trajectories Relate ground-based in situ observations to cloud base: *Vertical transport obs and mod*

