Using AEROCOM-B emissions we evaluate direct and indirect aerosol effects on climate in terms of:

Climate sensitivity to carbonaceous aerosols Heating effects of black carbon Aerosol-convective cloud effects

Forcings due to aerosols in the GISS GCM

Case	Sulfate	OC	BC	BC	Total
	Total	(fossil/bio- fuel/biomass)	(fossil/bio- fuel)	(biomass)	
Direct forcing (W m-2)	-0.29	-0.13	0.18	0.06	-0.18
Forcing efficiency (W g-1)	-103	-106	1385	857	NA

Forcings due to aerosols in the GISS GCM

Case	Sulfate	OC	OC	BC	BC	Net Cloud forcing
	Total	(fossil & bio-fuel)	(biomass & terpene)	(fossil & bio-fuel)	(biomass)	$(W m^{-2})$
M02	2.66/0.42	1.57	/0.14	-	-	-4.36
	5.03/1.05	2.46	/0.27	-	-	-2.41
Exp A	2.96/0.15	0.98/0.57	1.61/0.80	0.13/0.0	0.12/0.06	-0.65
Exp A_S	4.34/0.14	0.96/0.55	1.63/0.15	0.12/0.0	0.12/0.01	-1.03

Simulations to determine aerosol climate sensitivity

Simulation	Туре
Exp A	Standard run with both indirect effects
Exp NBC	Like Exp A but without fossil/bio-fuel Black Carbon
Exp 2BC	Like Exp A but with twice fossil/bio-fuel Black Carbon

 Δ : denotes differences between simulations with present-day aerosol emissions (AEROCOM) and pre-industrial aerosols (terpenes, DMS, volcanic, some portion of biomass, sea-salt and dust). Climate sensitivity is determined from ratio of surface temperature change to forcing.

Climate sensitivity for:

- $\Delta \mathbf{E} \mathbf{x} \mathbf{p} \mathbf{A} \qquad \qquad \mathbf{0.12} \mathbf{K} \mathbf{W}^{-1} \mathbf{m}^2$
- Δ Exp NBC 0.097 K W⁻¹ m²
- $\Delta Exp \ 2BC \qquad 1.14 \ K \ W^{-1} \ m^2$

Sensitivity in same model coupled to a mixed ocean slab model for: $2xCO_2$ 0.66 K W⁻¹ m²

In an atmosphere only model (Hadley Center climate model) with 4 times as much fossil fuel Black Carbon as in Exp A:

Annual mean surface temperature change is ~ 0.436 K

Climate sensitivity = $0.56 \text{ K W}^{-1} \text{ m}^2$

(Roberts and Jones, 2004).

Effects of Black Carbon on cloud properties not considered.

Within the same model the climate sensitivity to doubled CO_2 is ~ 0.91 K W⁻¹ m².

Indian Ocean (Jan-Mar) (0-20N, 40-100E)	TOA (Wm ⁻²)	Surface (Wm ⁻²)	Atmosphere (Wm ⁻²)	Precipitation (mm/d)
Δ Εχρ Α	-2.97	-7.33	4.36	0.35
Δ Εχρ ΝΒC	-2.07	-3.52	1.45	-0.08
Δ Exp 2BC	-2.06	-5.71	3.65	0.01

15 Blue Ocn Green Ocn 10 Percent Change in Precipitation (%) 5 0 -5 -10 -15

Change in climate due to aerosol-convective clouds effects

Exp A

Exp CC1

Exp CC2