

Global shortwave aerosol direct radiativeforcing from MODIS measurements for mineral dust, marine aerosol, biomass-burning and industrial pollution.

Nicolas Bellouin, Olivier Boucher, and Jim Haywood

November 2004

The shortwave direct aerosol radiative forcing

What is needed?

- 1. The aerosol optical thickness for each type
- 2. The aerosol optical properties for each type
- 3. The surface albedo

Step 1

Get the optical thickness for mineral dust, marine aerosol and anthropogenic aerosols

Solve ^τ**total ⁼**τ**dust ⁺**τ**marine ⁺**τ**biomass/pollution**

- Help wanted!
- -Ångström exponent α spectral dependence of the extinction
- Fine fraction rfraction of the OT due to the accumulation-mode particles
- $\mathcal{L}_{\mathcal{A}}$ Surface wind speeds give a rough estimate of the marine aerosol OT
- TOMS aerosol indexdetects UV-absorbing aerosols (i.e. dust and biomass-burning)

The POLDER-1 algorithm over clear-sky oceans

Bellouin et al., *GRL*, 2003

The MODIS algorithm over clear-sky oceans

Measurements from the Met Office C-130 Osborne and Haywood, *Atmos. Res.,* **2004**

Get a *sensible* estimate of the marine aerosol OT when dust or biomass/pollution is identified.

Linear relationship from Smirnov et al., *JGR, 2003*

In the algorithm, wind speeds are provided by SSM/I.

The MODIS algorithm: Data for September 2002

MODIS gerosol optical thickness at 550 nm - September 2002

The MODIS algorithm: Data for September 2002

TOMS Aerosol Index

SSM/I wind speeds

The MODIS algorithm: Results for September 2002

Distributions of optical thicknesses for 2002

Step 2

Estimate the radiative forcing from the discriminated optical thicknesses

From the optical thickness to the radiative forcing

From the optical thickness to the radiative forcing

Aerosol optical properties

Biomass-burning and pollution properties

- **The optical thickness is derived in the same way for all** biomass-burning and pollution aerosols.
- But optical properties differ according to geographic location, using regional boxes.

Surface albedo

Over ocean, the albedo is computed using *Cox and Munk* [1954]

Over land, the albedo is derived from MODIS measurements (products MOD43B3, *Schaaf et al.,* 2002) and corrected for aerosol effects.

MODIS: Monthly average for February 2002

Top of atmosphere

Mineral dust Marine aerosol Biomass+Poll.

Absorption

© Crown copyright 2004 Page 18

MODIS: Monthly averages for September 2002

Top of atmosphere

Mineral dust Marine aerosol Biomass+Poll.

Absorption

MODIS: Global clear-sky averages for 2002

(+) lower bound of anthropogenic RF $\,$ (-) upper bound of anthropogenic RF $\,$ $\,$ $\,$ $_{\tiny{\text{Page 20}}\,}$

Conclusion

- Our algorithm applied to MODIS data does a good job distributing the total optical thickness to mineral dust, marine aerosol, and biomassburning and pollution aerosols.
- Choosing realistic aerosol properties from AERONET measurements improves the confidence in the estimated radiative forcings.
- **Paper to be submitted soon.**

Radiative forcing efficiency

Olivier Boucher LOA (CNRS/USTL, France)

Contributions from Nicolas Bellouin Shekar Reddy Jim Haywood

The concept of radiative forcing efficiency (RFE) has been introduced to decouple uncertainties on aerosol burden/OD from uncertainties in other inputs and RT and to allow intercomparaison.

Clear-sky RFE of a particular aerosol type depends on:

- aerosol single scattering albedo & aerosol upscattering
- surface albedo
- $\mathcal{L}_{\mathcal{A}}$ diurnal and seasonal distribution of SZA at a particular location / region
- histogram of AOD (for a given average AOD).
- + small uncertainty on RT scheme (assuming RT is done properly!)

All-sky RFE depends additionnally on:

- vertical distribution of aerosol and cloud
- cloud fraction.
- + it may be more sensitive to the RT scheme used.

Moreover RFE will depend critically on

- -RH growth factor if reported by unit of dry mass (sulfate, OM, sea-salt)
- © Crown copyright 2004 Page 23 $\mathcal{L}_{\mathcal{A}}$ radius cut size if reported by unit of mass for sea-salt and dust

Clear-sky and all-sky TOA SW RFE from our GCM calculations:

Needs to be intercompared in AEROCOM B & PRE Weighted by the sophistication of the RT procedure.

Global RF and RFE from MODIS/AERONET aerosol properties and RT calculations

© Crown copyright 2004 Page 25 Bellouin, Boucher & Haywood

Clear-sky TOA SW RFE (@550 nm) from the GCM calculations:

BUT GCM clear-sky <> MODIS clear-sky (sampling issue) ! ==> sample MODIS clear-sky in model nudged 2002 run

==> intercompare in AEROCOM B&PRE to see if LMDZ is an outlier * RT scheme ?

* aerosol SSA ?

* surface albedo ?

of other (absorbing) aerosols, which shifts RFs to less negative values. * our GCM dust and sea-salt calculations are done in the presence

Shortwave 24-stream 24-waveband versus 2-stream 2-waveband RT codes Aerosol optical depth $= 0.1$ Surface albedo $= 0.0$

Broadband 24-stream 24-waveband versus 2-stream 2-waveband RT codes Aerosol optical depth $= 0.1$ Surface albedo $= 0.2$

Broadband 24-stream 24-waveband versus 2-stream 2-waveband RT codes Aerosol optical depth $= 1.0$ Surface albedo $= 0.0$

Broadband 24-stream 24-waveband versus 2-stream 2-waveband RT codes Aerosol optical depth $= 1.0$ Surface albedo $= 0.2$

The direct aerosol RF is not as linear as we may think! $\rm{DF}_{\rm \; dust}$ + $\rm{DF}_{\rm \; bb}$ $\rm{<}$ $\rm{DF}_{\rm \; dust+bb}$ Implication is that $F_{\text{dust+bb}} - F_{\text{bb}} > F_{\text{dust}} - F_0$ $\times \times$ AF(τ _dust + τ _bb)
 $\circ \rightarrow$ AF(τ _dust) + AF(τ _bb) $\begin{array}{l} \chi \rightarrow \chi$ F(τ _dust + τ _bb)
 $\phi \rightarrow \phi$ F(τ _dust)+F(τ _bb)-F(τ =0) 100 -10 JPWARD FLUXES AT TOA (Wm-2) **TOA** -20 SWARF (Wm-2) 80 -30 60 Surfood -40 -50 40 0.0 0.2 0.6 $0.B$ 1.0 0.0 0.2 0.4 0.6 6.0 1.0 0.4 COS(SZA) COS(SZA) Page 31 Page