

Emissions-MIP (or, what is important about emissions)

October 12, 2020 AeroCom / AeroSAT 2020

Steven J Smith^{*}, Susanne E. Bauer[‡], Hailong Wang[§], Mingxuan Wu[§], Jingbo Wu[‡] ^{*}Joint Global Change Research Institute, ASOC,PNNL [§]Atmospheric Sciences & Global Change, PNNL [‡]NASA Goddard Institute for Space Studies

PNNL is operated by Battelle for the U.S. Department of Energy

Dimensions of Emission Data Uncertainty

In addition to global annual emission rates and long-term trends, other characteristics of emissions will impact results, but these impacts are not well quantified:

Temporal Distribution: Seasonality, Diurnal & Weekly Patterns

□ Impacts aerosol formation and transport, chemical reaction rates

Injection Height and Characteristics

- \Box Effective Injection Height = stack height + plume rise (v, T, W)
- \Box Plume processing (e.g. fraction of SO₂ injected as SO₄)

Spatial Distribution (and changes over time)

- □ Shifts within US emissions over 20th century (China, Canada, Russia?)
- \Box Atlantic vs Pacific distribution of 20th century International Shipping SO₂
- Some of this information is in regional datasets, but requires work to incorporate into long-term global data.
- Other uncertainties could be substantially reduced, but also requires effort

Emissions Sensitivity Model Inter-comparison Pacific (Emissions-MIP)

Conduct specific emission perturbations (perturbation – reference) across models and compare model results.

Model Aggreement	Low Priority	Highest Priority For Emissions Development	 We will le of emission important We will al
	Scientific Interest	Highest Priority For Model Evaluation	something useful ab (where th agree/dis

Impact (Forcing, Temperature, Concentration)

earn what aspects ons data are for global models

lso learn g scientifically out the models ey agree)

Emissions-MIP: Project Structure

Philosophy: Probe model behavior with climatically relevant aerosol/precursor emission perturbations, as realistically "as possible".

Phase 1

Suite ~decadal length, atmosphere-only (proscribed ocean & sea-ice) model runs

• Includes CTMs as well as atmospheric components of GCMs

First order evaluation of inter-model differences, and magnitude of effects on radiative forcing and concentrations

Phase 2

Ensembles of fully coupled model experiments over longer periods (20-50 years) to test sensitivity in the interactive system for cases found to be important in Phase I.

Aim to branch from CMIP6 DECK/historical runs

Data Logistics

- Use CMIP6 input and output data format specifications
- Public data and protocols to allow for replication and extension

Proposed Experiments: Phase 1

Proposed Suite of Phase 1 Sensitivity Experiments

Property	Reference State	Contrast Ca
SO ₂ Emission Height	Surface Emissions	Emissions at a
SO ₂ Seasonality	CMIP6 (CEDS) seasonality	No seasonality
BC Seasonality	CMIP6 (CEDS) seasonality	No seasonality
International Ship SO ₂ Emission - 1950	CMIP6 distribution	CMIP5 distribut
International Ship SO ₂ Emission - 1920	CMIP6 distribution	CMIP5 distribu
% SO ₂ emitted as SO ₄	x% as SO ₄	0%, 2%, 4%, 8
Regional SO ₂ Emissions Sensitivity	Latest Europe and N American CEDS 1950s emissions	Emissions adju by max estimat

se specified height tion tion % as SO_4 isted up or down ted uncertainty

Sensitivity to SO₂ Emissions Seasonality

emissions data results in a small global decrease (~3%) in surface SO₂ concentrations

- When nudged winds are used, • two models.
- ٠ magnitude (but not sign) from nudged results.
- Larger differences expected • regionally

* HadSST Ocean Temperatures

Preliminary Results

Removing seasonality from the SO_2

difference is similar between these

Without nudging noise is much larger, and results can differ in