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The Atmospheric Tomography Mission (ATom)
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The Atmospheric Tomography Mission (ATom)

Vertical Profiling
~0.2 – 12km
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ATom Aerosol Measurements

• Size Distributions
• Composition

- Bulk non-refractory (AMS)
- Bulk (filters)
- Single Particle (PALMS)
- Volatility 

• Black Carbon (SP2)
• Brown Carbon
• Optical Properties (scattering, extinction)

Photograph: Samuel Hall, NCAR

Gas Phase:
• Tracers
• VOCs
• GHGs
• NOx and NOy
• …



Aerosol Size Distributions
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Instruments inside the DC8 
cabin (behind aerosol inlet)

Under-wing instruments

§ Minimizing inlet effects on 
coarse mode data

§ Full size distribution
between 3 nm and 930 µm

§ Quantification of size
distribution uncertainties

3-60 nm:      60 nm – 4.8 µm: 500 nm – 930 µm:
2x NMASS        UHSAS,  LAS                     CAPS

AMP: Christina Williamson and Charles Brock, 
NOAA/CIRES and Agnieszka Kupc, University of Vienna

CAPS: Bernadett Weinzierl and Maximilian Dollner, 
University of Vienna



Using ATom Data
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Photograph: Samuel Hall, NCAR

• Data publicly available on 
the NASA ESPO archive

• Contact and collaboration 
with instrumentalists 
(contact details on ESPO 
archive) strongly advised 
before beginning a study 
with any ATom data



Derivation of cloud phase over global scales
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ATom-1, PACIFIC Cirrus

mixed-phase 
clouds regime

water clouds

Aerosol cloud transition regime
(very humid, > 75% RH)

CAPS: Bernadett Weinzierl and Maximilian Dollner, University of Vienna



The global 
distribution of 
particles from 
nucleation

8AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna
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ATom 1 = August 2016
The global 
distribution of 
particles from 
nucleation

9AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna
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New Particle Formation and Growth in the Tropics
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Particles formed in 
the tropical upper 
troposphere grow to 
Cloud Condensation 
Nuclei sizes on 
descent to the 
boundary layer

11AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna

Tropics, August and February, Atlantic and Pacific
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The global 
distribution of 
Cloud 
Condensation 
Nuclei-sized 
particles

AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna 13
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Origins of Cloud Condensation Nuclei -sized particles

AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna 14

Sea-Salt Biomass BurningMineral DustSulfate/Organic/Nitrate

PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES



Origins of 
Cloud 
Condensation 
Nuclei-sized 
particles
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Sea-Salt

Sulfate/Organic/Nitrate

Biomass Burning

Mineral Dust

AMP: Christina Williamson and Charles Brock, NOAA/CIRES and Agnieszka Kupc, University of Vienna
PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES



First global maps of mineral dust by direct 
measurement

16PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES
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First global maps of mineral dust by direct 
measurement

17PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES
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Revised 
convective 
removal in 
CESM-CARMA 
better aligns 
modeled dust 
with ATom
observations

18PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES; CESM: Pengfei Yu, NOAA/CIRES

Yu et al., GRL, 
in review

>23N
Tropics

<23S

ATom1 Atlantic, 
Aug 2016

PALMS
CESM default

CESM revised



First data on sea salt above 2 km and over a 
wide range of latitudes

19PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES

• Extremely low sea-
salt (~ 1ppt) in 
upper troposphere

• New constraints on 
halogen chemistry

ATom1 (August 2016) and ATom2 (February 2017), West of 70 °



Biomass Burning can dominate accumulation 
mode aerosol number, even far from sources

20

Pacific Atlantic

PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES; CESM: Pengfei Yu, NOAA/CIRES

Aug ‘16

Feb ‘17



Fraction of 
accumulation mode 
aerosol from 
Biomass Burning is 
greater in each 
hemisphere during 
winter

21PALMS: Karl Froyd, Gregory Schill, Daniel Murphy, NOAA/CIRES; CESM: Pengfei Yu, NOAA/CIRES



Global Distribution of Black Carbon
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SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES

ATom 1
Aug ‘16



Global Distribution of Black Carbon

23

Pa
cif

ic
At

la
nt

ic
Convective Cleaning

SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES

ATom 1
Aug ‘16



Global Distribution of Black Carbon
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African Biomass Burning

SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES

ATom 1
Aug ‘16



Models tend to over-estimate black carbon at 
high altitudes

25SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES
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Models tend to over-estimate black carbon at 
high altitudes

26SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES
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Pacific basins, JGR, in review



Models tend to over-estimate black carbon at 
high altitudes

27SP2: Joseph Katich, Joshua Schwarz, NOAA/CIRES
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AEROCom II Models tend to overestimate remote 
Organic Aerosol

28AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder; AEROCom II: Kostas Tsigaridis, NASA GISS/Columbia



AEROCom II Models tend to overestimate remote 
Organic Aerosol
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AEROCom II Models tend to overestimate remote 
Organic Aerosol

30AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder; AEROCom II: Kostas Tsigaridis, NASA GISS/Columbia



ATom-1 measured

31AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez

“remote” “polluted”

Cleanest areas have lower f(OA), 
suggesting:
• Strong local sulfate 

production or 
• Removal of OA at faster rates 

than other species

A missing chemical loss process for organic aerosol?



ATom-1 measured
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GEOS-Chem v10.1

AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez

“remote” “polluted”

Cleanest areas have lower f(OA), 
suggesting:
• Strong local sulfate 

production or 
• Removal of OA at faster rates 

than other species

Models without OA-specific 
removal fail to reproduce this 
trend

A missing chemical loss process for organic aerosol?



Aerosol pH is important

33AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

Various aerosol processes 
depend on pH, including 
uptake and partitioning



Aerosol pH is important

34AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

Various aerosol processes 
depend on pH, including 
uptake and partitioning



pH from observations is lower than predicted 
by models

35AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

ATom1 – August ‘16

Uncertainty on pH calculated from observation ± 0.5 



Models fails to capture decrease in pH between 
urban and remote environments

36AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

GEOS-Chem = 1.19

Observations = ‒0.65



Models fails to capture decrease in pH between 
urban and remote environments

37AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

GEOS-Chem = 1.19 GEOS-Chem = 1.66
Observations = ‒0.65 Observations = 0.43



Models fails to capture decrease in pH between 
urban and remote environments

38AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

GEOS-Chem = 1.19 GEOS-Chem = 1.66 GEOS-Chem = 1.41

Observations = ‒0.65 Observations = 0.43 Observations = 1.57



Models fails to capture decrease in pH between 
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Models fails to capture decrease in pH between 
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Models fails to capture decrease in pH between 
urban and remote environments

41AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

GEOS-Chem = 1.19 GEOS-Chem = 1.66 GEOS-Chem = 1.41

Observations = ‒0.65 Observations = 0.43 Observations = 1.57



Incorrect aerosol pH in models will affect 
many processes

42AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

Atmosphere

GEOS-Chem
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Photograph: Samuel Hall, NCAR

Summary



44
Photograph: Samuel Hall, UCAR

1. Global-scale, in-situ measurements of aerosol 
physical and chemical properties have been 
made in all four seasons on NASA ATom
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Photograph: Samuel Hall, UCAR

1. Global-scale, in-situ measurements of aerosol 
physical and chemical properties have been 
made in all four seasons on NASA ATom

2. These can provide constrains on aerosol 
processing, transport, removal, formation …
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Photograph: Samuel Hall, UCAR

1. Global-scale, in-situ measurements of aerosol 

physical and chemical properties have been 

made in all four seasons on NASA ATom

2. These can provide constrains on aerosol 

processing, transport, removal, formation …

3. Data are available from the NASA ESPO archive 

– early contact with instrumentalists strongly 

encouraged 



Example Aerosol Products

• Concentration by number, surface area and volume 
- Nucleation , Aitken, Accumulation and Coarse Modes

• Aerosol Scattering, Absorption and Extinction
• Aerosol Mass

- Organic - Ammonium - Sulfate
- Dust- Biomass Burning - Sea Salt
- Black Carbon - Brown Carbon …

• Number fraction from 
- Dust - Biomass Burning - Sea Salt …

• Calculated pH
• Cloud phase
• Cloud droplet number
• …

47
Photograph: Samuel Hall, NCAR
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Contact us:

Size Distributions (AMP): 
christina.williamson@noaa.gov, agnieszka.kupc@univie.ac.at , charles.a.brock@noaa.gov

Single Particle Composition (PALMS): 
karl.froyd@noaa.gov , gregory.schill@noaa.gov , daniel.m.murphy@noaa.gov

Black Carbon (SP2): 
joseph.m.katich@noaa.gov, joshua.p.schwarz@noaa.gov

Bulk Composition (AMS): 
jose.jimenez@colorado.edu , pedro.campuzanojost-1@colorado.edu, benjamin.nault@colorado.edu

Cloud Properties (CAPS): 
bernadett.weinzierl@univie.ac.at , maximilian.dollner@univie.ac.at

Photograph: Samuel Hall, NCAR



backup
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Excess ammonia in models increases aerosol pH

50AMS: Pedro Campuzano-Jost, Ben Nault, Jose Jimenez,  CU Boulder

Atmosphere

GEOS-Chem

Atmosphere

GEOS-Chem

NH4 much 
higher in 
model than 
observations



How submicron aerosol pH is estimated 
with a  thermodynamic model

NO3‒

NO3
‒

SO42‒

SO42‒

NH4+

NH4
+

NH4+

NH4
+

H2O

H2O

H2O

H2O

H2O

H2O

H2O H2O

H+H+

HNO3
NH3

HNO3
NH3

Temperature
H2O
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NH3 NH3

Model Input:
Total NO3 or aerosol NO3-

Total NHx or aerosol NH4+

SO4
Temperature & relative humidity

Hennigan et al., ACP, 2015
Guo et al., JGR, 2016, ACP, 2017
Song et al., ACP, 2018



Most  submicron nitrate found in ATom is organic

52

• Highly acidic aerosol keeps inorganic nitrate in the gas-phase (except in neutralized BB plumes)
• There is a persistent, yet very low background of (likely long-lived) particulate organic nitrate

AMS: Pedro Campuzano-Jost, Ben Nault, Doug Day, Jose Jimenez,  CU Boulder



pRONO2 contributes significantly to total RONO2

53
AMS: Pedro Campuzano-Jost, Ben Nault, Doug Day, Jose Jimenez,  CU Boulder; WAS (gasphase): Barbara Barletta, Don Blake, UC Irvine


