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Background

On the responses of droplet concentration and size to increases in aerosol, Boucher
et al. (2013) say “aircraft measurements (e.g., Twohy et al., 2005; Lu et al., 2007,
2008; Hegg et al., 2012) tending to show stronger responses than satellite-derived

responses (McComiskey and Feingold, 2008; Nakajima and Schulz, 2009; Grandey
and Stier, 2010)”.
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On the responses of droplet concentration and size to increases in aerosol, Boucher
et al. (2013) say “aircraft measurements (e.g., Twohy et al., 2005; Lu et al., 2007,
2008; Hegg et al., 2012) tending to show stronger responses than satellite-derived
responses (McComiskey and Feingold, 2008; Nakajima and Schulz, 2009; Grandey
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Our main findings
Satellite-based estimates may have been underestimated, because of:
e exaggerated CCN variability
e the use of standard least-squares regression

besides the scale problem (Grandey and Stier, 2010; McComiskey and Feingold,
2012).
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Al scales with CCN fairly well.

Not so well on a seasonal average
basis (next slide).



Aerosol Index

Is Al proportional to CCN?
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Al exaggerates CCN’s site- and season-dependence...
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500 nm dry extinction (Mm) * Angstrom (450/700)
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CCN Proxies

Aerosol Index
AOD x Angstrom (o)

Derived from an AVHRR
algorithm
(Nakajima et al., 2001)

Total aerosol

Can be negative

CCN Index
100-30:+1.350.75

where o is dry extinction

Fitted to in situ
measurements
(Shinozuka et al., 2015)

CCN at 0.4%
supersaturation (variants
at 0.2% and 0.6% also)

Always positive

Neither addresses the dependence on humidity and altitude; uncertainty
in the input including Angstrom exponent; pre-industrial values
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In situ dry CCNI-CCN relationship
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Regression for ACI
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Regression for ACI
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Regression for ACI

Calculation to be repeated

& ¢ e with CCNI in place of Al
(e : e by standard least-squares
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e with a variety of uncertainty
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dlogNg/alogAl, Orthogonal Distance Regression , T
e on aregional basis instead of 0.1

Locations with a wide range of CCN proxy (gstd>0.5) only degree

e with land data
e 0n a seasonal basis instead of
multi-year



Regression for ACI

2003 - 2015
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ACI (the partial derivative)
is stronger with:

e CCNIin place of Al

e ODRin place of LSR

Regression for ACI
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Coincident measurements of AOD and dry
extinction at ARM/AERONET sites

*Positive correlation
*High variability
*A weak trend with Angstrom exp., possibly
the effects on Azores marine aerosols of:
 removal of particles >10 um upstream
of in situ instruments
e imperfect cloud masking of AERONET
V2
* high humidification
e deeper boundary layer height (???)
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Latitude

Altitude-resolved aerosol products, with
a possibility to compute humidification

©

MERRA-2 20030923 500 nm ext

(a1
90 0.30<
o
o
(@)
60 % 0.25%
—~
30 4 0.20 €
~
]
0 0152
=
o
-30 0.105
o
LM
—601 0.05
—%'%80 —90 0 90 %00
Longitude

Arlindo M. da Silva, Ravi C. Govindaraju

Latitude

CD derived from MODIS 20030923

90 102
60 .
0
30 10205
X 4+
| k)
o S
h ISD
o
Q
—60
—-90Q . - . | 1010
—180 -90 0 90 180
Lonagitude

Bennartz and Rausch (2017)
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e The partial derivative is
higher with the CCN
Index (y axis).

* The use of Al may lead to
an underestimate of
aerosol-cloud
interactions (ACI).




Summary
Satellite-based estimates may have been underestimated, because of:
eexaggerated CCN variability
*the use of standard least-squares regression

besides the scale problem (Grandey and Stier, 2010; McComiskey and Feingold,
2012).

Next steps

*Refine CCN approximation: retrieval uncertainty, vertical profile, humidification,
fine-mode AOD

eUpdate ACI estimates: horizontal and temporal resolution, clouds over land, trends
since 2002, radiative effects and forcing
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Coincident measurements of AOD and dry
extinction at ARM/AERONET sites

*Positive correlation
*High variability
*A weak trend with Angstrom exp., possibly
the effects on Azores marine aerosols of:
 removal of particles >10 um upstream
of in situ instruments
e imperfect cloud masking of AERONET
V2
* high humidification
e deeper boundary layer height (???)
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Aerosol Index
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Relative variability (geometric standard deviation) of Al/CCN
(coincident with in situ or not)
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Relative variability (geometric standard deviation) of Al/CCN
(for AERONET data coincident with in situ measurements)
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MODIS-derived CDNC (Bennartz and Rausch, 2017)

0.66x+2.29
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MERRA-2 20030923 500 nm ext
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e Aerosol Index varies more than cloud condensation nuclei (CCN).
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Definitions of aerosol-cloud interactions (ACl)

The scale problem in quantifying aerosol indirect effects

A. McComiskey' and G. Feingold? 20 1 2

ACT has been reported or derived later from measurements
published 1n the literature for almost two decades. A vari-
ety of proxies has been used to represent the aerosol par-
ticles affecting the cloud. including aerosol number concen-
tration N,. t,. and aerosol index Al (the product of 7, and the
Angstrém exponent), all of which will henceforth be denoted
by «. Similarly, various proxies have been used to repre-
sent the cloud response to the change 1n aerosol, e.g., cloud
optical depth .. cloud drop number concentration Ny, and
re. Using data for which the analysis scale closely matched
the process scale. McComiskey et al. (2009) showed empir-
ically that there 1s consistency amongst calculations of ACI
using different microphysical proxies, provided the appropri-
ate constraint on cloud liquid water path L 1s applied. Thus,

dlnt; .
ACI, = - 0 < ACI; < 0.33 (1a)
dlne |
dlnre _
ACL = — - 0 < ACIL, < 0.33 (1b)
dlne |
1In N,
ACT = £ 0 <ACIy < 1 (1¢)
dIna

1
ACI; = —-ACL = -ACIy. (1d)
J
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Figure 3. Slopes of the linear regression In CDNC versus In AOD for the different regions and seasons.
Error bars show 10 times the standard deviation (a list of abbreviations is given in Table 1).
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Definitions of aerosol-cloud interactions (ACl)

The scale problem in quantifying aerosol indirect effects
2012

ACT has been reported or derived later from measurements
published 1n the literature for almost two decades. A vari-
ety of proxies has been used to represent the aerosol par-
ticles affecting the cloud. including aerosol number concen-
tration N,. t,. and aerosol index Al (the product of 7, and the
Angstrém exponent), all of which will henceforth be denoted
by «. Similarly, various proxies have been used to repre-
sent the cloud response to the change 1n aerosol, e.g., cloud
optical depth .. cloud drop number concentration Ny, and
re. Using data for which the analysis scale closely matched
the process scale. McComiskey et al. (2009) showed empir-
ically that there 1s consistency amongst calculations of ACI
using different microphysical proxies, provided the appropri-
ate constraint on cloud liquid water path L 1s applied. Thus,
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Figure 3. Slopes of the linear regression In CDNC versus In AOD for the different regions and seasons.

Error bars show 10 times the standard deviation (a list of abbreviations is given in Table 1).
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Ground-based and airborne
measurements



The relationship between
CCN and dry extinction

e The slope is less
than unity.
Condensation
Increases extinction
but not number.

* CCNgg_g 49(CM™)
100.3a+1.30-0.75
o: dry ext. (Mm1),
a: Angstrom exp.
RMS deviation is a
factor of 2.0.
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Preliminary data from
GIT (Kacarab, Nenes),
HiGEAR (Dobracki,

Freitag, Howell, et al.)
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The relationship between
CCN and dry extinction

e CCN varies less than aerosol
index (Al, AODxa).

e A doubling of AOD is associated
with less than a doubling of
CCN.

Shinozuka et al., ACP 2015
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e Aerosol Index varies more than cloud condensation nuclei (CCN).
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Model and satellite-based
estimates



Definitions of aerosol-cloud
interactions (ACI)

The scale problem in quantifying aerosol indirect effects

A. McComiskey'~ and G. Feingold®

ACT has been reported or derived later from measurements
published in the literature for almost two decades. A vari-
ety of proxies has been used to represent the aerosol par-
ticles affecting the cloud, including aerosol number concen-
tration N,. 7,. and aerosol index Al (the product of 7, and the
Angstrom exponent), all of which will henceforth be denoted
by «. Similarly, various proxies have been used to repre-
sent the cloud response to the change 1n aerosol, e.g., cloud
optical depth r., cloud drop number concentration Ny4. and
re. Using data for which the analysis scale closely matched
the process scale. McComiskey et al. (2009) showed empir-
ically that there is consistency amongst calculations of ACI
using different microphysical proxies, provided the appropri-
ate constraint on cloud liquid water path L is applied. Thus,

dlnt, _
ACT; = & 0 < ACI; < 0.33 (1a)
dlna |
dln
ACT, = — ¢ 0 < ACL < 0.33 (1b)
dlne |
/InN
ACTy = 22 0 < ACIy < 1 (1c)
dIna
1 |
ACI, = —ACL = —ACIy. (1d)
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Satellite-based estimate of the direct and indirect
aerosol climate forcing
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